Positioning in wireless local area networks Wi-Fi standard IEEE 802.11az. Part 2. Model of multi-path radio channel
- Authors: Bagaev E.S.1, Fokin G.A.1
-
Affiliations:
- Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Issue: No 5 (2025)
- Pages: 26-34
- Section: WIRELESS COMMUNICATION
- URL: https://journals.eco-vector.com/2070-8963/article/view/688744
- DOI: https://doi.org/10.22184/2070-8963.2025.129.5.26.34
- ID: 688744
Cite item
Abstract
Today, wireless local area network systems using the IEEE 802.11 standard are becoming increasingly widespread to provide radio access for user devices to global networks in various operational scenarios. Along with the access capabilities of the IEEE 802.11az standard at the radio interface level, there is a possibility of implementing high-precision range-finding positioning technology for user devices with decimeter accuracy. This work continues a series of studies dedicated to positioning issues in wireless local area networks using the IEEE 802.11az standard and addresses the problem of investigating the impact of multipath propagation on the accuracy of primary range-finding signal arrival time measurements.
Full Text

About the authors
E. S. Bagaev
Bonch-Bruevich Saint Petersburg State University of Telecommunications
Author for correspondence.
Email: bagaeve13@yandex.ru
аспирант
Russian Federation, Saint PetersburgG. A. Fokin
Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: grihafokin@gmail.com
д.т.н., проф.
Russian Federation, Saint PetersburgReferences
- Фокин Г.А. Сетевое позиционирование 5G и вероятностные модели оценки его точности // T-Comm: Телекоммуникации и транспор. 2020. Т. 14. № 12. С. 4–17.
- Тихвинский В., Девяткин Е., Белявский В. По пути от 5G к 5G Advanced: Релизы 17 и 18 // ПЕРВАЯ МИЛЯ. 2021. № 6 (98). С. 38−47.
- Тихвинский В.О., Девяткин Е.Е., Тихвинская М.В. MWC Barcelona 2024: выход на рубеж 5,5G // ПЕРВАЯ МИЛЯ. 2024. № 2 (118). С. 20–26.
- Тихвинский В., Девяткин Е., Белявский В., Смирнов Ю. Архитектура сетей 6G: принципы и особенности построения. Часть 1 // ПЕРВАЯ МИЛЯ. 2022. № 3 (103). С. 50–57.
- Тихвинский В., Девяткин Е., Белявский В., Смирнов Ю. Архитектура сетей 6G: принципы и особенности построения. Часть 2 // ПЕРВАЯ МИЛЯ. 2022. № 4 (104). С. 44–49.
- Mautz R. Overview of current indoor positioning systems // Geodezija ir kartografija. 2009. Vol. 35. No. 1. PP. 18–22.
- Batistić L., Tomic M. Overview of indoor positioning system technologies // 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2018. PP. 0473–0478.
- Фокин Г.А., Багаев Е.С., Мещеряков Д.Е. Позиционирование в беспроводных локальных сетях WI-FI стандарта IEEE 802.11az. Часть 1. Постановка задачи достижения дециметровой точности // ПЕРВАЯ МИЛЯ. 2025. № 1. С. 50–56.
- Picazo-Martínez P. et al. IEEE 802.11 az Indoor Positioning with mmWave // IEEE Communications Magazine. 2023. Vol. 62. No. 10. PP. 126–131.
- Famili A., Atalay T., Stavrou A. Unlocking the Potential of IEEE 802.11 az: A Deep Dive into Ranging Capabilities // 2025 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2025. PP. 763–769.
- Schepers D., Ranganathan A. Privacy-preserving positioning in wi-fi fine timing measurement // Proceedings on Privacy Enhancing Technologies. 2022.
- Фокин Г.А. Модель технологии сетевого позиционирования метровой точности 5G NR. Часть 1. Конфигурация сигналов PRS // Труды учебных заведений связи. 2022. Т. 8. № 2. С. 48–63.
- Фокин Г.А. Модель технологии сетевого позиционирования метровой точности 5G NR. Часть 2. Обработка сигналов PRS // Труды учебных заведений связи. 2022. Т. 8. № 3. С. 80–99.
- Saleh A.A.M., Valenzuela R. A statistical model for indoor multipath propagation // IEEE Journal on selected areas in communications. 1987. Vol. 5. No. 2. PP. 128–137.
- IEEE 802.11ax Task Group. Channel Model Document [Электронный ресурс]. URL: https://www.ieee802.org/11/Reports/tgax_update.html (дата обращения: 17.05.2025).
- Erceg V., Schumacher L., Kyritsi P. TGn Channel Models. [Электронный ресурс]. URL: https://mentor.ieee.org/802.11/dcn/09/11-09-0308-10-00ac-tgac-channel-model-addendum-document.doc (дата обращения: 07.07.2025).
- Breit G., Sampath H., Vermani S. TGac Channel Model Addendum. [Электронный ресурс]. URL: https://mentor.ieee.org/802.11/dcn/09/11-09-0308-10-00ac-tgac-channel-model-addendum-document.doc (дата обращения: 07.07.2025).
- Geirhofer S., Tong L., Sadler B.M. A measurement-based model for dynamic spectrum access in WLAN channels // MILCOM-2006 2006 IEEE Military Communications conference. IEEE, 2006. PP. 1–7.
- Marinovic I., Zanchi I., Blazevic Z. Estimation of channel parameters for “Saleh–Valenzuela” model simulation // 18th International Conference on Applied Electromagnetics and Communications. IEEE, 2005. PP. 1–4.
- Meijerink A., Molisch A.F. On the physical interpretation of the Saleh–Valenzuela model and the definition of its power delay profiles // IEEE Transactions on Antennas and Propagation. 2014. Vol. 62. No. 9. PP. 4780–4793.
- Anusuya K.V., Bharadhwaj S., Rani S.S. Wireless channel models for indoor environments // Defence Science Journal. 2008. Vol. 58. No. 6. PP. 771–777.
- Jakobsen M.L., Pedersen T., Fleury B.H. Analysis of the stochastic channel model by Saleh & Valenzuela via the theory of point processes // 22th International Zurich Seminar on Communications (IZS). Eidgenössische Technische Hochschule Zürich, 2012.
- Багаев Е.С., Фокин Г.А. Модели радиоканала для позиционирования в сетях стандарта IEEE 802.11az. 80-я Научно-техническая конференция Санкт-Петербургского НТО РЭС им. А.С.Попова, посвященная Дню радио: сб. докладов [Электронный ресурс]. URL: https://conf-ntores.etu.ru/2025/ru/sbornik-dokladov/ (дата обращения 15.05.2025).
- Staniec K., Kowal M. Measurement evaluation of the TGN radio channel model usefulness in predicting WLAN performance // Progress In Electromagnetics Research. 2013. Vol. 137. PP. 311–333.
- wlanTGnChannel MathWorks. [Электронный ресурс]. URL: https://www.mathworks.com/help/wlan/ref/wlantgnchannel-system-object.html (дата обращения 15.05.2025).
- Redieteab G. et al. PHY+ MAC channel sounding interval analysis for IEEE 802.11 ac MU-MIMO // 2012 International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2012. PP. 1054–1058.
- Asai Y. Advanced progress in IEEE 802.11 WLAN standardization // 2014 Asia-Pacific Microwave Conference. IEEE, 2014. PP. 911–913.
- Yu Y. et al. Statistical channel model based on passive measurements for indoor WiFi communications at 2.4 GHz and 5.8 GHz bands // IEEE Antennas and Wireless Propagation Letters. 2023. Vol. 23. No. 2. PP. 778–782.
- Menta E.Y. et al. On the performance of AoA–based localization in 5G ultra–dense networks // IEEE Access. 2019. No. 7. PP. 33870–33880.
- wlanTGaxChannel MathWorks. [Электронный ресурс]. URL: https://www.mathworks.com/help/wlan/ref/wlantgaxchannel-system-object.html (дата обращения 15.05.2025).
- Farrokhi H. TOA estimation using MUSIC super-resolution techniques for an indoor audible chirp ranging system // 2007 IEEE International Conference on Signal Processing and Communications. IEEE, 2007. PP. 987–990.
Supplementary files
