Research of network traffic decorrelation algorithm based on wavelet transformation

封面

如何引用文章

全文:

详细

The article is devoted to the development of the network traffic decorrelation algorithm, allowing to significantly reduce the values of the autocorrelation coefficients of time intervals between packets. The proposed algorithm is based on finding the coefficients of the Haar wavelet transformation coefficient. An experimental analysis, presented demonstrates that an increase in the delay and the level of packet losses during video transmission over the network is closely related to an increase in the value of the autocorrelation coefficients of time intervals between packets at the traffic source output. The algorithm's performance is checked both on the resulting experimental trace and on the generated time intervals with the predetermined correlation coefficient, the value of which significantly exceeds the experimental value. The result of the proposed algorithm is new time intervals with a significantly reduced autocorrelation degree (almost equal zero).

作者简介

I. Kartashevskiy

Povolzhskiy State University of Telecommunications and Informatics

编辑信件的主要联系方式.
Email: i.kartashevskiy@psuti.ru

Professor of Software Engineering Department, Doctor of Technical Science

俄罗斯联邦, Samara

V. Osanov

Povolzhskiy State University of Telecommunications and Informatics

Email: v.osanov@psuti.ru

Senior Teacher of Management in Technical Systems Department.

俄罗斯联邦, Samara

S. Malakhov

Povolzhskiy State University of Telecommunications and Informatics

Email: s.malakhov@psuti.ru

Associated Professor of Management in Technical Systems Department, PhD in Technical Science

俄罗斯联邦, Samara

D. Iakupov

Povolzhskiy State University of Telecommunications and Informatics

Email: d.yakupov@psuti.ru

Teacher of Software Engineering Department

俄罗斯联邦, Samara

参考

  1. Cisco. VNI Complete Forecast Highlights. URL: https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf (accessed: 23.03.2024).
  2. Maglaris B.S. et al. Performance models of statistical multiplexing in packet video communications. IEEE Transactions on Communications, 1988, vol. 36, no. 7, pp. 834–844. doi: 10.1109/26.2812
  3. Nomura M., Fujii T., Ohta N. Basic characteristics of variable rate video coding in ATM environment. IEEE Journal on Selected Areas in Communications, 1989, vol. 7, no. 5, pp. 752–760. doi: 10.1109/49.32338
  4. Tanwir S., Perros H.G. A survey of VBR video traffic models. IEEE Communications Surveys & Tutorials, 2013, vol. 15, no. 4, pp. 1778–1802. doi: 10.1109/SURV.2013.010413.00071
  5. Tanwir S., Perros H. VBR Video Traffic Models: Monograph. New Jersey: Wiley & Sons, 2014, 148 p.
  6. Mohamed A., Agamy A. A Survey on the common network traffic sources models. International Journal of Computer Networks, 2011, vol. 3, no. 2, pp. 103–115.
  7. Chandrasekaran B. Survey of network traffic models. Computer Science, Engineering, 2006, pp. 1–8. URL: https://www.cs.wustl.edu/~jain/cse567-06/ftp/traffic_models3.pdf (accessed: 11.05.2024).
  8. Biernacki A. Analysis of aggregated HTTP-based video traffic. Journal of Communications and Networks, 2016, vol. 18, no. 5, pp. 826–846. doi: 10.1109/JCN.2016.000111
  9. Biernacki A. Analysis and modelling of traffic produced by adaptive HTTP-based video. Multimedia Tools and Applications, 2017, vol. 76, no. 10, pp. 12347–12368. doi: 10.1007/s11042-016-3623-8
  10. Bobrikova E.V., Gaidamaka Yu.V. Analysis of the file distribution time in Peer-to-Peer network. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika, 2018, vol. 26, no. 1, pp. 84–92. doi: 10.22363/2312-9735-2018-26-1-84-92 (In Russ.)
  11. Markovich N., Krieger U. Statistical analysis and modeling of peer-to-peer multimedia traffic. Network Performance Engineering. Lecture Notes in Computer Science, 2011, vol. 5233, pp. 70–97. doi: 10.1007/978-3-642-02742-0_4
  12. Markovich N. et al. Integrated measurement and analysis of peer-to-peer traffic. Proceedings of 8th International Conference Wired/Wireless Internet Communications (WWIC 2010). Lulea, 2010, pp. 302–314. doi: 10.1007/978-3-642-13315-2_25
  13. Eittenberger P., Krieger U., Markovich N. Teletraffic modeling of peer-to-peer traffic. Proceedings of 44th Winter Simulation Conference (WSC 2012). Berlin, 2012, pp. 1–12. doi: 10.1109/WSC.2012.6465302
  14. Bykov V.V. Digital modeling in statistical radio engineering: Monograph. Мoskow: Sovetskoe radio, 1971, 328 p.
  15. Kartashevskii I.V. Processing of correlated traffic in infocommunication networks: Monograph. Мoskow: Goryachaya liniya-Telekom, 2023, 200 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kartashevskiy I.V., Osanov V.A., Malakhov S.V., Iakupov D.O., 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。