Prospects of the first human glucagon-like peptide 1 analog liraglutid use in the treatment of patients with type 2 diabetes mellitus


Cite item

Full Text

Abstract

Liraglutid is the first representative of human glucagon-like peptide-1 (GLP-1) analogs. The article presents data for the mechanisms of liraglutid action and review of studies on the efficacy and safety of its use in patients with type 2 diabetes mellitus (type 2 diabetes). Based on the research results, liraglutid administration in doses of 1.2/1.8 mg once daily resulted in significant and sustained glycemic control improvement, and also was accompanied by a number of additional effects, such as a persistent decrease in body weight, clinically significant decrease of systolic blood pressure level and improvement of of beta-cells function. Thus, new class of human GLP-1 analogs provides a unique opportunity in the treatment of type 2 diabetes mellitus, providing pathogenetic influence on progressive reduction of beta-cell function, and factors of cardiovascular risk.

References

  1. Moore B. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J 1906;1:28-38.
  2. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 2003;26:2929-40.
  3. Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986;63:492-98.
  4. Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993;36:741-44.
  5. Vilsboll T, Agerso H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 2003;88:220-24.
  6. Vilsboll T. Liraglutide: a once-daily GLP-1 analogue for the treatment of type 2 diabetes mellitus.Expert Opin Investig Drugs 2007;16:231-37.
  7. Drucker D, Nauck M. The incretin system: glucagonlike peptide-1 receptor agonists and dipeptidyl peptidase- 4 inhibitors in type 2 diabetes. Lancet 2006;368:1696-701.
  8. Elbrond B, Jakobsen G, Larsen S, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002;25:1398-404.
  9. Agerso H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002;45:195-202.
  10. Knop FK, Vilsboll T, Hojberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 2007;56:1951-59.
  11. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359:824-80.
  12. Zdravkovic M, Hale P, Le Thi TD, et al. Overview of the design of the phase 3 studies for the longacting human GLP-1 analogue liraglutide: Liraglutide Effect and Action in Diabetes (LEAD). Diabetes 2007;56(Suppl. 1):abstr. 2251-PO.
  13. Holst JJ, Orskov C, Nielsen OV, et al. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 1987;211:169-74.
  14. Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 1988;123:2009-13.
  15. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007;113:546-93.
  16. Drucker DJ. The biology of the incretins. Cell Metab 2006;3:153-65.
  17. Holz GG IV, Kuhtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1 (7-37). Nature 1993;361:362-65.
  18. Madsbad S, Schmitz O, Ranstam J, et al. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004;27:1335-42.
  19. Feinglos MN, Saad MF, Pi-Sunyer FX, et al. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on glycaemic control and bodyweight in subjects with type 2 diabetes. Diabet Med 2005;22:1016-23.
  20. Harder H, Nielsen L, Tu DT, et al. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care 2004;27:1915-21.
  21. Vilsboll T, Zdravkovic M, Le-Thi T, et al. Liraglutide, a long-acting human GLP-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes mellitus. Diabetes Care 2007;30:1608-10.
  22. Degn KB, Juhl CB, Sturis J, et al. One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and a- and b-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004;53:1187-94.
  23. Mari A, Degn K, Brock B, et al. Characterisation of beta-cell function improvement by liraglutide: modelling analysis of 24-h tests. Diabetes 2006;55(Suppl. 1):A124, abstr. 522-P.
  24. Nauck MA, Homspesch M, Filipczak R, et al. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 2006;114:417-23.
  25. Seino Y, Kaku K, Nishijima K, et al. Once daily dosing of the long acting GLP-1 analog liraglutide significantly improves glycaemic control by reducing both fasting and post-prandial glucose levels in Japanese subjects with type 2 diabetes. Diabetes 2007;56(Suppl. 1):abstr. 0520-P.
  26. Blonde L, et al. Liraglutide: superior glycemic control versus exenatide when added to metformin and-or SU in type 2 diabetes. Can J Diab 2008;32(Suppl.):abstr. 107.
  27. Garber A, et al. Lancet 2008:doi: 10.1016/S0140-6736(08)61246-5.
  28. Marre M, et al. Diabetes 2008;57(Suppl. 1):13-OR.
  29. Nauck M, et al. Diabetes Care 2008;in press.
  30. Russell-Jones D, et al. Diabetes 2008a;57(Suppl. 1):A159, abstr. P536.
  31. Zinman B, et al. Diabetologia 2008;51(Suppl.1):359, abstr. 898.
  32. Vilsboll T, Brock B, Perrild H, et al. Liraglutide, a oncedaily human GLP-1 analogue improves beta-cell function and arginine stimulated insulin secretion at hyperglycaemia in patients with type 2 diabetes mellitus. Diabet Med 2008;25:152-56.
  33. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007;87:1409-39.
  34. Mentlein R, Gallwitz B, Schmidt WE, et al. Dipeptidylpeptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;214:829-35.
  35. Fehmann HC, Hering BJ, Wolf MJ, et al. Effects of glucagon-like peptide-I (GLP-I) on hormone secretion from isolated human pancreatic islets. Pancreas 1995;11:196-200.
  36. Gros R, You X, Baggio CC, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 2003;144:2242-52.
  37. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004;110:955-61.
  38. Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005;54:146-51.
  39. Vilsboll T, Zdravkovic M, Le-Thi T, et al. Liraglutide treatment, blood pressure and biomarkers of cardiovascular risk in patients with type 2 diabetes: 14 weeks monotherapy study. Diabetes 2006;55(Suppl. 1):abstr. 2007-PO.
  40. Colagiuri S, et al. Diabetologia 2008;51(Suppl. 1):S360, abstr. 899.
  41. Turton MD, O'Shea D, Gunn I, et al. A role for glucagonlike peptide-1 in the central regulation of feeding. Nature 1996;379:69-72.
  42. Tang-Christensen M, Larsen PH, Goke R, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 1996;271:R848-R856.
  43. Meeran K, O'Shea D, Edwards CM, et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology 1999;140:244-50.
  44. Bose A, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005;54:146-51.
  45. Mari A, Sallas WM, He YL. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005;90:4888-94.
  46. Jonker D, Toft AD, Kristensen P, et al. Pharmacokinetic modelling of the once-daily human GLP-1 analogue liraglutide in healthy volunteers and comparison to exenatide. Diabetes 2007;56(Suppl. 1):abstr. 0605-P.
  47. Jendle J, et al. Diabetes 2008;57(Suppl. 1):P106.
  48. Nauck MA, Niedereichholz U, Etter R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy volunteers. Am J Physiol 1997;273:E981-E988.
  49. Irie S, Matsumura Y, Zdravkovic M, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of once-daily GLP-1 analogue liraglutide in healthy Japanese subjects. Diabetes 2007;56(Suppl. 1):abstr. 2131-PO.
  50. LEAD1,2,3,4,5 meta-analysis of antibody formation; Novo Nordisk, Data on file.
  51. http://www.pharmateca.ru/cgi-bin/statyi.pl?sid=2211&mid=1085056570&magid=166

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies