Sulfonylurea drugs and risk of cardiovascular complications - much ado about nothing?


Cite item

Full Text

Abstract

Cardiovascular complications are the main causes of mortality in patients with type 2 diabetes mellitus. Importance of accurate glycemic control aimed to prevention of these complications is proved. However, the use of some oral hypoglycemic agents, particularly sulfonylurea derivates (SUD), is accompanied by increase of cardiovascular risk, which can be explained by closure of ATP-dependent potassium channels. Whereas in the pancreas this mechanism leads to the stimulation of insulin secretion, it suppresses the phenomenon of ischemic preconditioning in the heart - an endogenous cardioprotective mechanism for prevention of fatal myocardium infarct. However, the effects of SUD on KATP channels in experimental studies are contradictory, and their clinical significance is not clear. Despite the structural differences in SUD and their varying ability to binding to the heart KATP channel receptor, to date there is no clinical evidences allowing to confirm the benefits of cardioprotective effect of any given SUD. This review is concerned with issues of molecular and cellular pharmacodynamics of SUD and data for their effects on the heart in patients with diabetes mellitus, with particular emphasis on glibenclamide - the most widely used SUD, which has the highest affinity for the KATP channel receptors in heart.

About the authors

L V Nedosugova

L Nedosugova

References

  1. World Health Organisation: The World Health Report 1998. Life in 21st Century - a Vision for All. Geneva: World Health Organisation, 1998.
  2. Hsueh WA, Law RE. Cardiovascular risk continuum: Implications of insulin resistance and diabetes. Am J Med 1998;105:4-14.
  3. O'Brien RC, Luo M. The effects of gliclazide and other sulfonylureas on low-density lipoprotein oxidation in vitro. Methabolism 1997;46(1):22-5.
  4. Доборджгинидзе Л.М., Грацианский Н.А. Роль статинов в коррекции диабетической дислипидемии // Сах. диабет.2001. № 2. C.41-47.
  5. Coutinho M, Gerstein HC, Wang Y, et al: The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999;22:233-40.
  6. UK Prospective Diabetes Study (UKPDS) Group: Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complication in patients with type 2 diabetes (UKPDS 33) Lancet.1998;352:837-53.
  7. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulintherapy prevents the progression of diabetic microvascular complications in Japanese patients with NIDDM: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103-17.
  8. Kahn SE, Zinman B, Lachin JM, et al. A Diabetes Outcome Progression Trial (ADOPT) Study Group. Rosiglitazone-associated fractures in type 2 diabetes:an analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008;31:845-51.
  9. Patel A, MacMahon S, Chalmers J, et al. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-72.
  10. Wilcox R, Kupfer S, Erdmann E. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10) Am Heart J 2008;155:712-7.
  11. Nathan DM, Cleary PA, Backlund JY, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/ EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643-53.
  12. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-89.
  13. Gaede P, Valentine WJ, Palmer AJ, et al. Costeffectiveness of intensified versus conventional multifactorial intervention in type 2 diabetes: results and projections from the Steno-2 study. Diabetes Care 2008;31:1510-5.
  14. Home PD, Pocock SJ, Beck-Nielsen H, et al. RECORD Study Team. Rosiglitazone Evaluated for Cardiovascular Outcomes in Oral Agent Combination Therapy for Type 2 Diabetes (RECORD): a multicentre, randomised, openlabel trial. Lancet 2009;373:2125-35.
  15. Miller ME, Byington RP, Goff DC Jr, et al. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-59.
  16. Duckworth W, Abraira C, Moritz T, et al. VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009;360:129-39.
  17. Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970;19:789-830.
  18. Seltzer HS. A summary of criticisms of the findings and conclusions of the University Group Diabetes Program (UGDP). Diabetes 1972;21:976-9.
  19. Feinglos MN, Bethel MA. Therapy of type 2 diabetes, cardiovascular death, and the UGDP. Am Heart J 1999;138:346-52.
  20. Soler NG, Bennett MA, Pentecost BL, et al. Myocardial infarction in diabetics. QJ Med, 1975;44:125-32.
  21. Kereiakes DJ. Myocardial infarction in the diabetic patient. Clin Cardiol 1985;8:446-50.
  22. Soler N, Bennett M, Lamb B,et al. Coronary care for myocardial infarction. Lancet 1974;1:475-7.
  23. Yudkin JS, Oswald GA. Determinants of hospital admission and case fatality in diabetic patients with myocardial infarction. Diabetes Care 1988;11:351-8.
  24. Krolewski AS, Czyzyk A, Janeczko D, et al. The fates of diabetic patients-Warsaw epidemiological study II. Mortality from coronary heart disease among diabetics in relation to methods of hypoglycemic treatment. Acta Medica Polona 1977;18:213-30.
  25. Richter B, Berger M. Randomized controlled trials remain fundamental to clinical decision making in Type II diabetes mellitus: A comment to the debate on randomized controlled trials. Diabetologia 2000;43:254-8.
  26. Connaughton M, Webber J. Diabetes and coronary artery disease: Time to stop taking the tablets? Heart 1998;80:108-9.
  27. Ashcroft FM, Gribble FM/ ATP-sensitivi K+channels and insulin secretion: their role in health and disease. Diabetologia 1999;2(8):903-19.
  28. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K1 channels: regulation by intracellular nucleotides and potassium opening drugs. Am J Physiol 1995;38:525-45.
  29. Noma A. ATP-regulated K1 channel in cardiac muscle. Nature 1983;305:147-9.
  30. Murray C, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay in lethal injury in ischemic myocardium. Circulation 1986;74:1124-36.
  31. Suzuki M, Sasaki N,Miki T, et al. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 2002;109:509-16.
  32. Tomai F. et al. Effects of KATP channel blokade by glybenclamide on warm-up phenomenon. Eur Heart J 1999;20:196-202.
  33. Inagaki N, Gonoi T, Clement JP, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996;16:1011-7.
  34. Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 1991;69:571-81.
  35. McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol 1993;265:1809-18.
  36. Yao Z, Gross GJ. Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs. Am J Physiol 1993;264:2221-5.
  37. Thornton JD, Thornton CS, Sterling DL, Downey JM. Blockade of ATP-sensitive potassium channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res 1993;72:44-9.
  38. Toombs CF, Moore TL, Shebuski RJ. Limitation of infarct size in the rabbit by ischaemic preconditioning is reversible with glibenclamide. Cardiovasc Res 1993;27:617-22.
  39. Billman GE, Avendano CE, Halliwill JR, Burroughs JM. The effects of the ATP-dependent potassium channel antagonist, glyburide, on coronary blood flow and susceptibility to ventricular fibrillation in unanesthetized dogs. J Cardiovasc Pharmacol 1993;21:197-204.
  40. Mitani A, Kinoshita K, Fukamachi K, et al. Effects of glibenclamide and nicorandil on cardiac function during ischemia and reperfusion in isolated perfused rat hearts. Am J Physiol 1991;261:1864-71.
  41. Auchampach JA, Maruyama M, Cavero I, Gross GJ. The new K+ channel opener Aprikalim (RP 52891) reduces experimental infarct size in dogs in the absence of hemodynamic changes. J Pharmacol Exp Ther 1991;259:961-7.
  42. Caulfield M, O'Brien K. Cardiovascular safety of oral antidiabetic agents: the insulin sedretagogues. Clin Diabetes 2002;20:81-4.
  43. Iwamoto T, Miura T, Urabe K, Itoya M, Shimamoto K, Iimura O. Effect of nicorandil on post-ischaemic contractile dysfunction in the heart: roles of its ATP-sensitive K+ channel opening property and nitrate property. Clin Exp Pharmacol Physiol 1993;20:595-602.
  44. Auchampach JA, Cavero I, Gross GJ. Nicorandil attenuates myocardial dysfunction associated with transient ischemia by opening ATPdependent potassium channels. J Cardiovasc Pharmacol 1992;20:765-71.
  45. Schulz R, Rose J, Heusch G. Involvement of activation of ATP dependent potassium channels in ischemic preconditioning in swine. Am J Physiol 1994;267:1341-52.
  46. Fralix TA, Steenbergen C, London RE, et al. Glibenclamide does not abolish the protective effect of preconditioning on stunning in the isolated perfused rat heart. Cardiovasc Res 1993;27:630-7.
  47. Offstad J, Kirkeboen KA, Ilebekk A, Downing SE. ATP gated potassium channels in acute myocardial hibernation and reperfusion. Cardiovasc Res 1994;28:872-80.
  48. Grover GJ, Dzwonczyk S, Sleph PG, Sargent CA. The ATP-sensitive potassium channel blocker glibenclamide (glyburide) does not abolish preconditioning in isolated ischemic rat hearts. J Pharmacol Exp Ther 1993;265:559-64.
  49. Chi L, Black SC, Kuo PI, Fagbemi SO, Lucchesi BR. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel. J Cardiovasc Pharmacol 1993;21:179-90.
  50. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223-33.
  51. LuH, Remeysen P, De Clerck F. The protection by ischemic preconditioning against myocardial ischemia- and reperfusion-induced arrhythmias is not mediated by ATP-sensitive potassium channels in rats. Coron Artery Dis 1993;4:649-57.
  52. Walsh RS, Tsuchida A, Daly JJ, et al. Ketamine-xylazine anaesthesia permits a KATP channel antagonist to attenuate preconditioning in rabbit myocardium. Cardiovasc Res 1994;28:1337-41.
  53. Shimabukuro M, Nagamine F, Murakami K, et al. Chronic gliclazide treatment affects basal and post-ischemic cardiac function in diabetic rats. Gen Pharmacol 1994;25:697-704.
  54. D'Alonzo AJ, Darbenzio RB, Parham CS, et al. Effects of intracoronary cromakalim on postischaemic contractile function and action potential duration. Cardiovasc Res 1992;26:1046-53.
  55. Galinanes M, Shattock MJ, Hearse DJ. Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia. Cardiovasc Res 1992;26:1063-8.
  56. Wolleben CD, Sanguinetti MC, Siegl PK. Influence of ATP-sensitive potassium channelmodulators on ischemia- induced fibrillation in isolatedrat hearts. J Mol Cell Cardiol 1989;21:783-8.
  57. Chi L, Black SC, Kuo PI, et al. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel. J Cardiovasc Pharmacol 1993;21:179-90.
  58. D'Alonzo AJ, Darbenzio RB, Hess TA, et al. Effect of potassium on the action of the KATP modulators cromakalim, pinacidil, or glibenclamide on arrhythmias in isolated perfusedrat heart subjected to regional ischaemia. Cardiovasc Res 1994;28:881-7.
  59. Bril A, Laville MP, Gout B. Effects of glibenclamide on ventricular arrhythmias and cardiac function in ischaemia and reperfusion in isolated rat heart. Cardiovasc Res 1992;26:1069-76.
  60. Kantor PF, CoetzeeWA, Carmeliet EE, et al. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res 1990;66:478-85.
  61. Vegh A, Papp JG, Szekeres L, et al. AreATP sensitive potassium channels involved in the pronounced antiarrhythmic effects of preconditioning? Cardiovasc Res 1993;27:638-43.
  62. Reimann F,Ashcroft FM, Gribble FM. Structural basis for the interference between nicorandil and sulfonylurea action. Diabetes 2001;50:2253-9.
  63. Ballagi-Pordany G, Koszeghy A, Koltai MZ, et al. Divergent cardiac effects of the first and second generation hypoglycemic sulfonylurea compounds.Diabetes Res Clin Pract 1990;8:109-14.
  64. Geisen K, Vegh A, Krause E, et al. Cardiovascular effects of conventional sulfonylureas and glimepiride. Horm Metab Res 1996;28:496-507.
  65. Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes 2002;51:808-12.
  66. St John Sutton M, Rendell M, Dandona P et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycaemic control in patients with type 2 diabetes. Diabetes Care 2002;25:2058-64.
  67. Lee TM, Su SF, Chou TF, er al. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 2002;105:334-40.
  68. Larsen JJ, Dela F, Madsbad S, et al. Interaction of sulfonylureas and exercise on glucose homeostasis in type 2 diabetic patients. Diabetes Care 1999;22:1647-54.
  69. Ovunc K. Effects of glibenclamide, a K(ATP) channel blocker, on warmup phenomenon in type II diabetic patients with chronic stable angina pectoris. Clin Cardiol 2000;23:535-9.
  70. Ferreira BM, Moffa PJ, Falcao A et al. The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon. Ann Noninvasive Electrocardiol 2005;10:356-62.
  71. Correa SD, Schaefer S. Blockade of K(ATP) channels with glibenclamide does not abolish preconditioning during demand ischemia. Am J Cardiol 1997;79:75-8.
  72. Bogaty P, Kingma JG Jr, Robitaille NM, et al. Attenuation of myocardial ischemia with repeated exercise in subjects with chronic stable angina: relation to myocardial contractility, intensity of exercise and the adenosine triphosphate-sensitive potassium channel. J Am Coll Cardiol 1998;32:1665-71.
  73. Pogatsa G, Koltai MZ, Ballagi-Pordany G. Influence of hypoglycaemic sulphonylurea compounds on the incidence of ventricular ectopic beats in NIDDM patients treated with digitalis. Curr Ther Res 1993;53:329-39.
  74. Bijlstra PJ, et al. Selective interaction of sulphonylurea derivatives with vascular and pancreatis KATP channels in man. Diabetologia 1995;38(1):43.
  75. Davis TM, et al. Arrhythmias and mortality after myocardial infarction in diabetic patients. Relationship to diabetes treatment. Diadetes Care 1998;21(4):637-40.
  76. Kersten JR, Schmeling TJ, Orth KG, et al. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol Heart Circ Physiol 1998;275:721-725.
  77. Kersten JR, Toller WG, Gross ER, et al. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 2000;278:1218-1224.
  78. Olsson J, Lindberg G, Gottsater M, et al. Increased mortality in Type II diabetic patients using sulphonylurea and metformin in combination: a population-based observational study. Diabetologia 2000;43:558-60.
  79. Johnson JA, Majumdar SR, Simpson SH, et al. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002;25:2244-8.
  80. Horsdal HT, Johnsen SP, Søndergaard F, et al. Rungby Sulfonylureas and prognosis after myocardial infarction in patients with diabetes: a population-based follow-up study. Diabetes Metab Res Rev 2009;25(6):515-22.
  81. Munch-Ellingsen J, Bugge E, Ytrehus K. Blockade of the KATP-channel by glibenclamide aggravates ischaemic injury, and counteracts ischaemic preconditioning. Basic Res Cardiol 1996;91:382-8.
  82. Danchin N, Charpentier G, Ledru F, et al. Role of previous treatment with sulfonylureas in diabetic patients with acute myocardial infarction: results from a nationwide French registry. Diabetes Metab Res Rev 2005;21:143-9.
  83. Klamann A, Sarfert P, Launhardt V, et al. Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). EurHeart J 2000;21:220-9.
  84. Halkin A, Roth A, Jonas M, et al. Sulfonylureas are not associated with increased mortality in diabetics treated with thrombolysis for acute myocardial infarction. J Thromb Thrombolysis 2001;12:177-84.
  85. Weih M, Amberger N, Wegener S, et al. Sulfonylurea drugs do not influence initial stroke severity and in-hospital outcome in stroke patients with diabetes. Stroke 2001;32:2029-32.
  86. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patient with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 1997;314:1512-5.
  87. Mellbin LG, Malmberg K, Norhammar A, et al. The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 2008;29:166-176.
  88. Arruda-Olson AM, Patch RK, Leibson CL, et al. Effect of Second-Generation Sulfonylureas on Survival in Patients With Diabetes Mellitus After Myocardial Infarction Mayo Clin Proc 2009;84(1):28-33.
  89. http://www.pharmateca.ru/cgi-bin/statyi.pl?sid=2520&mid=1085056570&magid=187

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies