INGIBITORY FOSFODIESTERAZY-4: NOVYE PERSPEKTIVY PROTIVOVOSPALITEL'NOY TERAPII KhOBL


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To date, roflumilast is the first and single phosphodiesterase-4 (PDE-4) inhibitor registered as an adjunctive therapy in patients with severe chronic obstructive pulmonary disease (COPD), and frequent exacerbations, already receiving long-acting bronchodilator therapy. The main mechanism of action of roflumilast is associated with inhibition of airway inflammation in patients with COPD. In III phase clinical studies, it was shown that roflumilast improves functional parameters, symptoms, quality of life and reduces the number of exacerbations of COPD.

Full Text

Restricted Access

About the authors

S. N Avdeev

References

  1. Barnes PJ. Chronic obstructive pulmonary disease: a growing but neglected global epidemic. PLoS Med 2007;4:112.
  2. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO workshop report. Last updated 2013. www. goldcopd.org/. Celli BR, MacNee W. ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932-46.
  3. Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet 2007;370:741-50.
  4. Mannino DM, Homa DM, Akinbami LJ, et al. Chronic obstructive pulmonary disease surveillance - United States, 1971-2000. MMWR Surveill Summ 2002;51:1-16.
  5. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 19902020: Global Burden of Disease Study. Lancet 1997;349:1498-504.
  6. Stanford RH, Shen Y, McLaughlin T. Cost of chronic obstructive pulmonary disease in the emergency department and hospital: an analysis of administrative data from 218 US hospitals. Treat Respir Med 2006;5:343-49.
  7. Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002;57:847-52.
  8. Seemungal TAR, Donaldson GC, Paul EA, et al. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;151:1418-22.
  9. Seneff MG, Wagner DP, Wagner RP, et al. Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease. JAMA 1995;274:1852-57.
  10. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003; 22:672-88.
  11. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004;364:709-21.
  12. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000;343:269-80.
  13. Barnes PJ. Molecular genetics of chronic obstructive pulmonary disease. Thorax 1999; 54:245-52.
  14. Meshi B, Vitalis TZ, Ionescu D, et al. Emphysematous lung destruction by cigarette smoke. The effects of latent adenoviral infection on the lung inflammatory response. Am J Respir Cell Mol Biol 2002;26:52-7.
  15. Gilmour PS, Rahman I, Hayashi S, et al. Adenoviral E1A primes alveolar epithelial cells to PM(10)-induced transcription of interleukin-8. Am J Physiol Lung Cell Mol Physiol 2001;281:L598-606.
  16. Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1b-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000;20:6891-903.
  17. Ito K, Lim S, Caramori G, et al. Cigarette smok ing reduces histone deacetylase 2 expression, enhances cytokine expression and inhibits gluco-corticoid actions in alveolar macrophages. FASEB J 2001;15:1100-102.
  18. Barnes PJ. Macrophages as orchestrators of COPD. J COPD 2004;1:59-70.
  19. Burgel PR, Nadel JA. Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax 2004;59:992-96.
  20. Saetta M, Turato G, Maestrelli P, et al. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:1304-309.
  21. Thompson AB, Daughton D, Robbins RA, et al. Intraluminal airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis 1989;140:1527-37.
  22. Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumour necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996;153:530-34.
  23. Lacoste JY, Bousquet J, Chanez P, et al. Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 1993;92:537-48.
  24. Keatings VM, Barnes PJ. Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 1997;155:449-53.
  25. Peleman RA, Rytila PH, Kips JC, Joos GF, Pauwels RA. The cellular composition of induced sputum in chronic obstructive pulmonary disease. Eur Respir J 1999;13:839-43.
  26. Finkelstein R, Fraser RS, Ghezzo H, Cosio MG. Alveolar inflammation and its relation to emphysema in smokers. Am J Resp Crit Care Med 1995;152:1666-72.
  27. O'Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T-lymphocytes with FEV1. Am J Respir Crit Care Med 1997;155:852-57.
  28. Saetta M, Turato G, Facchini FM, et al. Inflammatory cells in the bronchial glands of smokers with chronic bronchitis. Am J Respir Crit Care Med 1997;156:1633-39.
  29. O'Shaughnessy TC, Ansari TW, Barnes NC. Inflammatory cells in the airway surface epithelium of smokers with and without bronchitic airflow obstruction. Eur Respir J 1996;9(Suppl. 23):14s.
  30. Stanescu D, Sanna A, Veriter C, et al. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 1996;51:267-71.
  31. Turato G, Di Stefano A, Maestrelli P, et al. Effect of smoking cessation on airway inflammation in chronic bronchitis. Am J Respir Crit Care Med 1995;152:1262-67.
  32. Rutgers SR, Postma DS, ten Hacken NH, et al. Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax 2000;55:12-8.
  33. Stockley RA. Neutrophils and the pathogenesis of COPD. Chest 2002;121(Suppl. 5):151-55.
  34. Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 2004; 56:515-48.
  35. Di Stefano A, Maestrelli P, Roggeri A, et al. Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med 1994;149:803-10.
  36. Keatings VM, Jatakanon A, Worsdell YM, et al. Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 1997;155:542-48.
  37. Culpitt SV, Maziak W, Loukidis S, et al. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;160:1635-39.
  38. Loppow D, Schleiss MB, Kanniess F, et al. In patients with chronic bronchitis a four week trial with inhaled steroids does not attenuate airway inflammation. Respir Med 2001;95:115-21.
  39. Gan WQ, Man SF, Sin DD. Effects of inhaled corticosteroids on sputum cell counts in stable chronic obstructive pulmonary disease: a systematic review and a meta-analysis. BMC Pulm Med 2005;5:3.
  40. Hattotuwa KL, Gizycki MJ, Ansari TW, et al. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease: a double-blind, placebo-controlled biopsy study. Am J Respir Crit Care Med 2002;165: 1592-96.
  41. Bourbeau J, Christodoulopoulos P, Maltais F, et al. Effect of salmeterol/fluticasone propionate on airway inflammation in COPD: a randomised controlled trial. Thorax 2007;62:938-43.
  42. Lapperre TS, Snoeck-Stroband JB, Gosman MM, et al. Effect of fluticasone with and without salmeterol on pulmonary outcomes in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2009 151 517-27.
  43. Barnes NC, Qiu Y-S, Pavord ID, et al. Antiinflammatory effects of salmeterol/ fluticasone propionate in chronic obstructive lung disease. Am J Respir Crit Care Med 2006;173:736-43.
  44. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 2005;25:552-63.
  45. Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005;352: 1967-76.
  46. Antoniu S.A. New therapeutic options in the management of COPD-focus on roflumilast. Int J Chron Obstruct Pulmon Dis 2011;6:147-55.
  47. Tenor H HA, Beume R, Lahu G, Zech K, Bethke T. Pharmacology, clinical efficacy and tolerability of phosphodiesterase-4 inhibitors: impact of human pharmacokinetics. In: Francis SH, et al. (eds). In "Phosphodiesterases as drug targets, handbook of experimental pharmacology 204". Berlin Heidelberg: Springer-Verlag; 2011.
  48. Weidenbach A, Braun C, Schwoebel F, Beume R, Marx D. Steroid insensitivity in a short-term model of cigarette smoke induced pulmonary inflammation in mice. Am J Respir Crit Care Med 2008; 177:A651.
  49. Weidenbach A, Braun C, Schwoebel F, Beume R, Marx D. Therapeutic effect of various PDE4 inhibitors on cigarette smoke induced pulmonary neutrophilia in mice. Am J Respir Crit Care Med 2008;177:A652.
  50. Bethke TD, Bohmer GM, Hermann R, et al. Dose-proportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor. J Clin Pharmacol 2007;47:26-36.
  51. Bethke TD, Lahu G. High absolute bioavailability of the new oral phosphodiesterase-4 inhibitor roflumilast. Int J Clin Pharmacol Ther 2011;49:51-7.
  52. Grootendorst DC, Gauw SA, Verhoosel RM, et al. The PDE4 inhibitor roflumilast reduces sputum neutrophil and eosinophil numbers in patients with COPD. Thorax 2007;62:1081-87.
  53. Rabe KF, Bateman ED, O'Donnell D, et al. Roflumilast - an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomized controlled trial. Lancet 2005;366:563-71.
  54. Calverley PM, Sanchez-Toril F, McIvor A, et al. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;176:154-61.
  55. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with lon-gacting bronchodilators: two randomised clinical trials. Lancet 2009;374 695-703.
  56. Calverley PM, Rabe KF, Goehring UM, et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet 2009;374:685-94.
  57. Rennard SI, Calverley PMA, Goehring UM, et al. Reduction of exacerbations by the PDE4 inhibitor roflumilast - the importance of defining different subsets of patients with COPD. Respiratory Research 2011,12:18.
  58. Bateman ED, Rabe KF, Calverley PMA, et al. Roflumilast with long-acting b2-agonists for COPD: influence of exacerbation history. Eur Respir J 2011;38:553-60
  59. Rice JP, Saccone NL, Rasmussen E. Definition of the phenotype. Adv Genet 2001;42:69-76.
  60. Han MK, Agusti A, Calverley PM, et al. COPD phenotypes: The future of COPD. Am J Respir Crit Care Med 2010;182:598-604.
  61. Mills EJ, Druyts E, Ghement I, Puhan MA. Pharmacotherapies for chronic obstructive pulmonary disease: a multiple treatment comparison meta-analysis. Clin Epidemiol 2011;28:107-29.
  62. Rabe KF. Update on roflumilast, a phosphodi esterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol 2011;163:53-67.
  63. FDA. Centre for Drug Evaluation and Research. Application number 022522Orig1s000. Medical Review(s). Available at http://wwwaccessdatafdagov /drugsatfda_docs/nda/2011/0 22522Orig1s000MedRpdf.
  64. Gamble E, Grootendorst DC, Brightling CE, et al. Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003;168:976-82.
  65. Wouters EF, Bredenbrker D, Teichmann P, et al. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J Clin Endocrinol Metab 2012;97:1720-25.
  66. Wouters EFM, Teichmann P, Brose M, et al. Effects of roflumilast, a phosphodiesterase 4 inhibitor, on glucose homeostasis in patients with treatment-naive diabetes (type 2). Am J Respir Crit Care Med 2010;181:4471.
  67. Hatzelmann A, Morcillo EJ, Lungarella G, et al. The preclinical pharmacology of roflumilast - a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2010;23:235- 56.
  68. Daliresp. Full prescribing information, revised September 2011. Forest Pharmaceuticals, St Louis. 2011.
  69. Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, et al. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res 2011;12:140.
  70. Wedzicha JA, Rabe KF, Martinez FJ, et al. Roflumilast for the frequent exacerbator phe-notype.Chest 2013; 143: online first. http:// journal.publications.chestnet.org/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies