SAKhARNYY DIABET: OT PONIMANIYa ETIOLOGII K VYBORU LEChENIYa


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article describes the modern conception of the etiology, pathogenesis and classification of diabetes mellitus. The detailed assessment of pharmacological agents aimed at correcting of hyperglycemia is presented. Particular attention is given to the group of sulfonylurea derivatives. It is concluded that gliclazide MR meets all the modern requirements for antidiabetic drugs for the treatment of type 2 diabetes mellitus: it has no effect on the processes of β-cell apoptosis, has a low risk of hypoglycemic states, has no effect on body weight, and is a safe drug for people with cardiovascular disease and can be used by patients with diabetic nephropathy.

Full Text

Restricted Access

About the authors

I. V Kononenko

Email: shakhtarina@bk.ru

O. M Smirnova

References

  1. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation, 1999.
  2. Молитвословова Н.А., Никонова Т.В. Сахарный диабет 2 типа, склонный к кетозу. Сахарный диабет. 2009; 3: 65-9.
  3. Кононенко И.В. Функциональное состояние β-клеток, периферическая чувствительность к инсулину, метаболизм глюкозы у больных с поздним аутоиммунным началом сахарного диабета в дебюте заболевания. Дисс.. канд. мед. наук. М., 2003.
  4. Tuomi T., Groop L.C., Zimmet P.Z., et al. Autoantibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of diabetes. Diabetes. 1993; 42: 359-62.
  5. Zimmet P., Tuomi T. Mackay I.R., et al. Latent Autoimmune Diabetes in Adults / LADA): the role of antibodiea to GAD in diagnosis and prediction of insulin dependency. Diabet. Med. 1994; 11: 229-303.
  6. Turner R., Stratton I., Horton V., et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet. 1997; 350: 12881-93.
  7. Кохрановский мета-анализ.
  8. Larsen S., Hilsted J., Philipsen E.K., et al. Glucouse counterregulation in diabetes secondary to chronic pancreatitis. Metabolism. 1990; 39(2): 138-43.
  9. Persson I., Gyntelberg F., Heding L.G., et al. Pancreatic-glucagon-like immunoreactiv-ity after intravenosus insulin in normals and chronic-pancreatitis patients. Acta Endocrinol. 1971; 67: 401-04.
  10. Meegan J.M., Sidor I.F., Steiner J.M., Sarran D., Dunn J.L. Chronic pancreatitis with secondary diabetes mellitus treated by use of insulin in an adult California sea lion. J Am Vet. Med. Assoc. 2008; 232(11): 1707-12.
  11. Sjoberg R.J., Kidd G.S. Pancreatic diabetes mellitus. Diabetes care. 1989; 12: 715-24.
  12. Никитина И.Л. Неаутоиммунный сахарный диабет у детей. Лечащий врач. 2010; 6.
  13. Кураева Т.Л., Емельянов А.О. Клиническая и генетическая гетерогенность неонатального сахарного диабета. Сахарный диабет. 2009; 3: 10-5.
  14. Lindoors M.M., Majamaa K., Tura A., et al. Diabetes. 2009; 58: 543-49.
  15. Maassen J.A., T Hart L.M., Van Essen E., Heine R.J., Nijpels G., et al. Diabetes. 2004; 53(Suppl 1): S103-09.
  16. Lambert A.P., Ellard S., Allen L.I., et al. Identifying hepatic nuclear factor 1 alpha mutation in children and ypung adults with a clinical diagnosis of type 1 diabetes. Diabetes Care. 200; 26(2): 333-37.
  17. Bellanne-Chantelot C., Clauin S., Chauveau D., et al. large genomic rearrangements in the hepatocyte nuclear factor-1 beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005; 54(911): 3126-32.
  18. Colagiuri S. Optimal management of type 2 diabetes: the evidence. Diabetes, Obesity Metabolism. 2012; 14(Suppl 1): 3-8.
  19. Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach. Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012; 35.
  20. Ashcroft F.M., Gribble F.M. Sulfonilurea stimulation of insulin secretion: lessons from studies of cloned channels. J. Diabetes Compl. 2000; 12: 2182-88.
  21. Seino S., Miki T. КATP channels as metabolitic sensors: protective roles against acute metabolic changes. Medicographia. 2005; 27(4): 307-10.
  22. Gabor Pogatsa et al. Effects of Glimepiride and Gliclazide on Cardiac Arrhytmias in Patient with type 2 diabetes and cardiac insufficiency. Diabetes. 2001; 50(suppl): A 128.
  23. The ADVANCE Collaborative Group. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2008; 358: 2560-72.
  24. Salas M., Caro J.J. Are hypoglycemia and other adverse effects similar among sulphonyl-ureas. Advers Drug React. Toxicol. Rev. 2002; 21: 205-17.
  25. Nikolajczyk B.S., Jagannathan-Bogdan M., et al. State of the union between metabolism and the immune system in type 2 diabetes. Genes and Immunity. 2011; 12: 239-50.
  26. Robertson R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 2004; 279: 42351-54.
  27. Iwakura T., Fujimoto S., et al. Sustained enchancement of Ca2+ influx by glibenclamide induces apoptpsis in RINm5F cells. Biochem. Biophys. Res. Commun. 2000; 271: 422-28.
  28. Fumi Sawada, Toyoshi Inoguchi, Hirotaka Tsubouchi, et al. Differential effect of sulfonyl-ureas on production of reactive oxygen species and apoptosis in cultured pancreatic -cell line, MIN6. Metabolism Clinical Experimental. 2008; 57: 1038-45.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies