Роль иммунологических параметров периферической крови в качестве предиктивных маркеров у онкологических больных: прогностическая роль индекса нейтрофилы/лимфоциты


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Соотношение нейтрофилов и лимфоцитов представляет собой простой и информативный прогностический биомаркер у больных злокачественными опухолями. В данном обзоре рассмотрены роль нейтрофилов при онкологических процессах и иммунологические основы их взаимодействия с лимфоцитами в процессе развития анергии Т-лимфоцитов. Представлены примеры клинического применения данного соотношения в качестве предиктивного и прогностического маркеров, а также его связь с некоторыми другими факторами.

Полный текст

Доступ закрыт

Об авторах

И. А Балдуева

Научный медицинский исследовательский центр онкологии онкологии им. Н.Н. Петрова

Санкт-Петербург, Россия

А. В Новик

Научный медицинский исследовательский центр онкологии онкологии им. Н.Н. Петрова; Санкт-Петербургский государственный педиатрический медицинский университет

Email: anovik@list.ru
к.м.н. старший науч. сотр. отдела онкоиммунологии, врач отделения химиотерапии и инновационных технологий; доцент кафедры онкологии, детской онкологии и лучевой терапии 197758, Россия, Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68

Список литературы

  1. Alderton G.K. Tumor immunology: TIM3 suppresses antitumor DCs. Nat Rev Immunol. 2012;12(9):620-21. doi: 10.1038/nri3288.
  2. Andrews L.P., Marciscano A.E., Drake C.G., Vignali D.A.A. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80-96. doi: 10.1111/imr.12519.
  3. Antonio N., Bonnelykke-Behrndtz M.L., Ward L.C., et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 2015;34:2219-36. doi: 10.15252/embj.201490147.
  4. Asna N., Cohen O., Batash R., et al. Is neutrophil-to-lymphocyte ratio a prediction marker for success of immunotherapy? Preliminary results. OJI. 2018;8:29-35. doi: 10.4236/oji.2018.82003.
  5. Baitsch L., Baumgaertner P., Devevre E., et al. Exhaustion of tumor-specific СВ8+ T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350-60. doi: 10.1172/JCI46102.
  6. Boissier R., Campagna J., Branger N., et al. The prognostic value of the neutrophil-lymphocyte ratio in renal oncology: a review. Urol Oncol. 2017;35:135-41. doi: 10.1016/j.urolonc.2017.01.016.
  7. Buisan O., Orsola A., Areal J., et al. Low Pretreatment neutrophil-to-lymphocyte ratio predicts for good outcomes in patients receiving neoadjuvant chemotherapy before radical cystectomy for muscle invasive bladder cancer. Clin Genitourinary Cancer. 2017;15:145-51.e2. doi: 10.1016/j.clgc.2016.05.004.
  8. Chou F.C., Chen H.Y., Kuo C.C., Sytwu H.K. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 2018;19(2).pill: E430. doi: 10.3390/ijms19020430.
  9. Coffelt S.B., Wellenstein M.D., de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431-46. doi: 10.1038/nrc.2016.52.
  10. Ericson J.A., Duffau P., Yasuda K., et al. Gene expression during the generation and activation of mouse neutrophils: implication of novel functional and regulatory pathways. PLoS ONE. 2014;9:e108553. doi: 10.1371/journal.pone.0108553.
  11. Finisguerra V., Di Conza G., Di Matteo M., et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349-53. doi: 10.1038/nature14407.
  12. Granot Z., Henke E., Comen E.A., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300-14. doi: 10.1016/j.ccr.2011.08.012.
  13. Grecian R., Whyte M.K.B., Walmsley S.R. The role of neutrophils in cancer. Br Med Bull. 2018;128(1):5-14. doi: 10.1093/bmb/ldy029.
  14. Grywalska E., Pasiarski M., Gozdz S. Immunecheckpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther. 2018;11:6505-24. Doi: 0.2147/OTT.S150817.
  15. Kondo Y., Ohno T., Nishii N., et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell. Oral Oncol.2016;57:54-60. doi: 10.1016/j.oraloncology.2016.04.005.
  16. Lalani A-K.A, Xie W., Martini D.J., et al. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. J. Immunother. Cancer. 2018;6:5. doi: 10.1186/s40425-018-0315-0.
  17. Lan X., Li S., Gao H., et al. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther. 2017;10:919-26. doi: 10.2147/OTT.S128825.
  18. Long L., Zhang X., Chen F., et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy Genes & Cancer. 2018;9:5-6. doi: 10.18632/genesandcancer.180.
  19. Mayadas T.N., Cullere X., Lowell C.A., et al. The multifaceted functions of neutrophils. Ann Rev Patol. 2014;9:181-218. doi: 10.1146/annurev-pathol-020712-164023.
  20. McLane L.M, Abdel-Hakeem M.S., Wherry E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Ann Rev Immunol. 2019. doi: 10.1146/annurev-immunol-041015-055318.
  21. Le M.I., Chen W., Lines J.L., et al. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74(7):1933-44. doi: 10.1158/0008-5472.CAN-13-1506.
  22. Mishalian I., Granot Z., Fridlender Z.G., et al. The diversity of circulating neutrophils in cancer. Immunobiol. 2017;222:82-8. doi: 10.1016/j.imbio.2016.02.001.
  23. Mizuno R., Kawada K., Itatani Y, et al. The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 2019;20:529. Doi:10.3390/ ijms20030529.
  24. Netea M.G., Joosten L.A., Latz E., et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:6284. doi: 10.1126/science.aaf1098.
  25. Personeni N., Giordano L., Abbadessa G., Porta C., et al. Prognostic value of the neutrophil-to-lymphocyte ratio in the ARQ 197-215 second-line study for advanced hepatocellular carcinoma. Oncotarget. 2017;8:14408-15. Doi: 0.18632/oncotarget.14797.
  26. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113.
  27. Sacdalan D.B., Lucero J.A., Sacdalan D.L. Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther. 2018;11:955-65. doi: 10.2147/OTT.S153290.
  28. Scharping N.E., Menk A.V., Moreci R.S., et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity.2016;45(2):374-88. Doi: 10.1016/j. immuni.2016.07.009.
  29. Schietinger A., Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51-60. doi: 10.1016/j.it.2013.10.001.
  30. Schulick R., Edil B., et al. Cancer-promoting mechanisms of tumor-associated neutrophils. Am. J. Surg. 2017;214:938-44. doi: 10.1016/j.amjsurg.2017.08.003.
  31. Sharma P., Alison J.P The future of immune checkpoint therapy. Science. 2015;348(6230):56-61. doi: 10.1126/science.aaa8172.
  32. Shaverdian N., Veruttipong D., Wang J., et al. Pretreatment immune parameters predict for overall survival and toxicity in early-stage non-small-cell lung cancer patients treated with stereotactic body radiation therapy. Clin Lung Cancer. 2016;17:39-46. doi: 10.1016/j.cllc.2015. 07.007.
  33. Spiegel A., Brooks M.W., Houshyar S., et al. Neutrophils suppress Intraluminal NK cell-mediated tumor cell clearance and enhance Extravasation of disseminated carcinoma cells. Cancer Discov. 2016;6:630-49. doi: 10.1158/2159-8290.CD-15-1157.
  34. Sukumar M., Kishton R.J., Restifo N.P Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 2017;46:14-22. doi: 10.1016/j.coi.2017.03.011.
  35. Swierczak F., Mouchemore K.A., Hamilton J.A., Anderson R.L. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015;34:735-51. doi: 10.1007/s10555-015-9594-9.
  36. Tecchio C., Cassatella M.A. Neutrophil-derived chemokines on the road to immunity. Semin Immunol. 2016;28:119-28. doi: 10.1016/j.smim.2016.04.003.
  37. Vlkova M., Chovancova Z., Nechvatalova J., et al. Neutrophil and granulocytic myeloid-derived suppressor cell-mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. J Immunol. 2019;202(1):93-104. doi: 10.4049/jimmunol.1800102.
  38. Wang Y., Ding Y., Guo N., Wang S. MDSCs: Key criminals of tumor pre-metastatic niche formation. 2019. doi: 10.3389/fimmu.2019.00172.
  39. Zemans R.L. Neutrophil-mediated T-cell suppression in influenza: novel finding additional questions. Am J Respir Cell Mol Biol. 2018;58(4):492-99. doi: 10.1165/rcmb.2017-00210C.
  40. Zhang X., Zhang W., Yuan X., et al. Neutrophils in cancer development and progression: roles, mechanisms, and implications (Review). Int J Oncol. 2016;49:857-67. doi: 10.3892/ijo.2016.3616.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2019