The role of peripheral blood immunological parameters as predictive markers in cancer patients: the prognostic role of the neutrophil/lymphocyte ratio


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The neutrophil/lymphocyte ratio is a simple and informative prognostic biomarker in patients with malignant tumors. In this review, the role of neutrophils in oncological processes and the immunological basis of their interaction with lymphocytes in the development of T-lymphocyte anergy are discussed. Examples of the clinical use of this ratio as a predictive and prognostic marker, as well as its relationship with some other factors, are presented.

Texto integral

Acesso é fechado

Sobre autores

I. Baldueva

N.N. Petrov National Medical Research Center of Oncology

St. Petersburg, Russia

Alexey Novik

N.N. Petrov National Medical Research Center of Oncology; St. Petersburg State Pediatric Medical University

Email: anovik@list.ru
PhD, Senior Researcher at the Department of Oncoimmunology, Physician at the Department of Chemotherapy and Innovative Technologies; Associate Professor at the Department of Oncology, Pediatric Oncology and Radiotherapy 68, Leningradskaya Street, Pesochny settlement, St. Petersburg 197758, Russian Federation

Bibliografia

  1. Alderton G.K. Tumor immunology: TIM3 suppresses antitumor DCs. Nat Rev Immunol. 2012;12(9):620-21. doi: 10.1038/nri3288.
  2. Andrews L.P., Marciscano A.E., Drake C.G., Vignali D.A.A. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276:80-96. doi: 10.1111/imr.12519.
  3. Antonio N., Bonnelykke-Behrndtz M.L., Ward L.C., et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 2015;34:2219-36. doi: 10.15252/embj.201490147.
  4. Asna N., Cohen O., Batash R., et al. Is neutrophil-to-lymphocyte ratio a prediction marker for success of immunotherapy? Preliminary results. OJI. 2018;8:29-35. doi: 10.4236/oji.2018.82003.
  5. Baitsch L., Baumgaertner P., Devevre E., et al. Exhaustion of tumor-specific СВ8+ T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350-60. doi: 10.1172/JCI46102.
  6. Boissier R., Campagna J., Branger N., et al. The prognostic value of the neutrophil-lymphocyte ratio in renal oncology: a review. Urol Oncol. 2017;35:135-41. doi: 10.1016/j.urolonc.2017.01.016.
  7. Buisan O., Orsola A., Areal J., et al. Low Pretreatment neutrophil-to-lymphocyte ratio predicts for good outcomes in patients receiving neoadjuvant chemotherapy before radical cystectomy for muscle invasive bladder cancer. Clin Genitourinary Cancer. 2017;15:145-51.e2. doi: 10.1016/j.clgc.2016.05.004.
  8. Chou F.C., Chen H.Y., Kuo C.C., Sytwu H.K. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 2018;19(2).pill: E430. doi: 10.3390/ijms19020430.
  9. Coffelt S.B., Wellenstein M.D., de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431-46. doi: 10.1038/nrc.2016.52.
  10. Ericson J.A., Duffau P., Yasuda K., et al. Gene expression during the generation and activation of mouse neutrophils: implication of novel functional and regulatory pathways. PLoS ONE. 2014;9:e108553. doi: 10.1371/journal.pone.0108553.
  11. Finisguerra V., Di Conza G., Di Matteo M., et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349-53. doi: 10.1038/nature14407.
  12. Granot Z., Henke E., Comen E.A., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300-14. doi: 10.1016/j.ccr.2011.08.012.
  13. Grecian R., Whyte M.K.B., Walmsley S.R. The role of neutrophils in cancer. Br Med Bull. 2018;128(1):5-14. doi: 10.1093/bmb/ldy029.
  14. Grywalska E., Pasiarski M., Gozdz S. Immunecheckpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther. 2018;11:6505-24. Doi: 0.2147/OTT.S150817.
  15. Kondo Y., Ohno T., Nishii N., et al. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell. Oral Oncol.2016;57:54-60. doi: 10.1016/j.oraloncology.2016.04.005.
  16. Lalani A-K.A, Xie W., Martini D.J., et al. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. J. Immunother. Cancer. 2018;6:5. doi: 10.1186/s40425-018-0315-0.
  17. Lan X., Li S., Gao H., et al. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther. 2017;10:919-26. doi: 10.2147/OTT.S128825.
  18. Long L., Zhang X., Chen F., et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy Genes & Cancer. 2018;9:5-6. doi: 10.18632/genesandcancer.180.
  19. Mayadas T.N., Cullere X., Lowell C.A., et al. The multifaceted functions of neutrophils. Ann Rev Patol. 2014;9:181-218. doi: 10.1146/annurev-pathol-020712-164023.
  20. McLane L.M, Abdel-Hakeem M.S., Wherry E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Ann Rev Immunol. 2019. doi: 10.1146/annurev-immunol-041015-055318.
  21. Le M.I., Chen W., Lines J.L., et al. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74(7):1933-44. doi: 10.1158/0008-5472.CAN-13-1506.
  22. Mishalian I., Granot Z., Fridlender Z.G., et al. The diversity of circulating neutrophils in cancer. Immunobiol. 2017;222:82-8. doi: 10.1016/j.imbio.2016.02.001.
  23. Mizuno R., Kawada K., Itatani Y, et al. The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 2019;20:529. Doi:10.3390/ ijms20030529.
  24. Netea M.G., Joosten L.A., Latz E., et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:6284. doi: 10.1126/science.aaf1098.
  25. Personeni N., Giordano L., Abbadessa G., Porta C., et al. Prognostic value of the neutrophil-to-lymphocyte ratio in the ARQ 197-215 second-line study for advanced hepatocellular carcinoma. Oncotarget. 2017;8:14408-15. Doi: 0.18632/oncotarget.14797.
  26. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113.
  27. Sacdalan D.B., Lucero J.A., Sacdalan D.L. Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther. 2018;11:955-65. doi: 10.2147/OTT.S153290.
  28. Scharping N.E., Menk A.V., Moreci R.S., et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity.2016;45(2):374-88. Doi: 10.1016/j. immuni.2016.07.009.
  29. Schietinger A., Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51-60. doi: 10.1016/j.it.2013.10.001.
  30. Schulick R., Edil B., et al. Cancer-promoting mechanisms of tumor-associated neutrophils. Am. J. Surg. 2017;214:938-44. doi: 10.1016/j.amjsurg.2017.08.003.
  31. Sharma P., Alison J.P The future of immune checkpoint therapy. Science. 2015;348(6230):56-61. doi: 10.1126/science.aaa8172.
  32. Shaverdian N., Veruttipong D., Wang J., et al. Pretreatment immune parameters predict for overall survival and toxicity in early-stage non-small-cell lung cancer patients treated with stereotactic body radiation therapy. Clin Lung Cancer. 2016;17:39-46. doi: 10.1016/j.cllc.2015. 07.007.
  33. Spiegel A., Brooks M.W., Houshyar S., et al. Neutrophils suppress Intraluminal NK cell-mediated tumor cell clearance and enhance Extravasation of disseminated carcinoma cells. Cancer Discov. 2016;6:630-49. doi: 10.1158/2159-8290.CD-15-1157.
  34. Sukumar M., Kishton R.J., Restifo N.P Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 2017;46:14-22. doi: 10.1016/j.coi.2017.03.011.
  35. Swierczak F., Mouchemore K.A., Hamilton J.A., Anderson R.L. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015;34:735-51. doi: 10.1007/s10555-015-9594-9.
  36. Tecchio C., Cassatella M.A. Neutrophil-derived chemokines on the road to immunity. Semin Immunol. 2016;28:119-28. doi: 10.1016/j.smim.2016.04.003.
  37. Vlkova M., Chovancova Z., Nechvatalova J., et al. Neutrophil and granulocytic myeloid-derived suppressor cell-mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. J Immunol. 2019;202(1):93-104. doi: 10.4049/jimmunol.1800102.
  38. Wang Y., Ding Y., Guo N., Wang S. MDSCs: Key criminals of tumor pre-metastatic niche formation. 2019. doi: 10.3389/fimmu.2019.00172.
  39. Zemans R.L. Neutrophil-mediated T-cell suppression in influenza: novel finding additional questions. Am J Respir Cell Mol Biol. 2018;58(4):492-99. doi: 10.1165/rcmb.2017-00210C.
  40. Zhang X., Zhang W., Yuan X., et al. Neutrophils in cancer development and progression: roles, mechanisms, and implications (Review). Int J Oncol. 2016;49:857-67. doi: 10.3892/ijo.2016.3616.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies