Medicines associated with the development of osteoporosis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Osteoporosis is one of the most relevant, complex and unresolved epidemiological, medical, social and economic problems facing the medical community and the global health system. Secondary drug-induced osteoporosis, as one of the most important aspects of the problem, also requires close examination. It is known that secondary osteoporosis is accompanied by a more intense decrease in bone tissue, increasing the risk of developing adverse outcomes (decreased quality of life, disability, death). Medicines associated with the development of secondary osteoporosis are prescribed by doctors of various specialties for the treatment of various pathological conditions. They are represented by hormonal (systemic glucocorticosteroids, aromatase inhibitors, depot medroxyprogesterone, gonadotropin releasing hormone agonists, thyroid hormone preparations - levothyroxine), cardiovascular (anticoagulants, loop diuretics), psychotropic (antiepileptics and antidepressants) drugs, immunomodulators (calcineurin inhibitors, antiretroviral drugs), as well as drugs used in the gastroenterological (proton pump inhibitors, H2-histamine receptor blockers), endocrinological (thiazolidinediones) and oncology practice. This article summarizes and systematizes the data available in the literature regarding the effect of drugs on the development of osteoporosis, with the aim of raising the awareness of physicians of various specialties using osteoporosis inducer drugs in routine clinical practice about the problem of drug-induced osteoporosis.

Full Text

Restricted Access

About the authors

Olga D. Ostroumova

Russian Medical Academy of Continuous Professional Education; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ostroumova.olga@mail.ru
Dr. Sci. (Med.), Professor of the Department of Therapy and Polymorbid Pathology

I. V Goloborodova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

References

  1. Kanis J.A. Оп behalf of the World Health Organization Scientific Group (2007). Assessment of osteoporosis at the primary healthcare level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK. 2007: Printed by University of Sheffield
  2. Российская ассоциация эндокринологов при участии: Российская ассоциация остеопороза, Российская ассоциация ревматологов, Ассоциация травматологов-ортопедов России, Российская ассоциация по менопаузе, Ассоциация гинекологов-эндокринологов. Остеопороз. Клинические рекомендации. М., 2016.
  3. Здоровье скелета: проблемы и пути решения. Глобальный план изменения ситуации. Available at: http://share. iofbonehealth.org/WOD/2016/thematicreport/ WOD16-report-WEB-RU.pdf
  4. Herniund E., Svedbom A., Ivergard M., et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136. doi: 10.1007/s11657-013-0136-1.
  5. Borgelt L.M., Fixen D.R. Osteoporosis and Osteomalacia. In: Tisdale JE, Miller DA, eds. Drug-Induced Diseases: Prevention, Detection, and Management. 3rd ed. Bethesda: American Society of Health-System Pharmacists, 2018. Р 1119-33.
  6. O'Connel M.B., Borgelt M.B., Bowles S.K., Vondracek S.F Drug-induced osteoporosis in the older adult. Aging Health. 2010;6(4):501-18.
  7. Panday K, Gona A., Humphrey M.B. Medication-induced osteoporosis: screening and treatment strategies. Ther Adv Musculoskel Dis. 2014;6(5):185-202. doi: 10.1177/1759720X14546350.
  8. Mazziotti G, Canalis E., Giustina A. Drug-induced Osteoporosis: Mechanisms and Clinical Implications. Am J Med. 2010;123:877-84. Doi: 10.1016/j. amjmed.2010.02.028.
  9. Nguyen K.-D, Bagheri B., Bagheri H. Druginduced bone loss: a major safety concern in Europe. Exp Opin Drug Saf. 2018;17(10):1005-14. doi: 10.1080/14740338.2018.1524868.
  10. Civitelli R., Ziambaras K. Epidemiology of glucocorticoid-induced osteoporosis. J Endocrinol Invest. 2008;31(7):2-6.
  11. Compston J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol. 2010;6(2):82-8. doi: 10.1038/nrrheum.2009.259.
  12. van Staa T.P, Leufkens H.G.M., Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2002;13(10):777-87. doi: 10.1007/s001980200108.
  13. Dowsett M., Cuzick J., Ingle J., et al. Metaanalysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28(3):509-18. Doi: 10.1200/ JCO.2009.23.1274.
  14. Ghazi M., Roux C. Hormonal deprivation therapy-induced osteoporosis in postmenopausal women with breast cancer. Best Pract Res Clin Rheumatol. 2009;23(6):805-11. Doi: 10.1016/j. berh.2009.09.003.
  15. Howell A., Cuzick J., Baum M., et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet. 2005;365(9453):60-62. doi: 10.1016/S0140-6736(04)17666-6.
  16. Rabaglio M., Sun Z., Price K.N., et al. Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of ietfozoie or tamoxifen in the BIG 1-98 trial. Ann. Oncol. 2009;20(9):1489-98. Doi: 10.1093/ annonc/mdp033.
  17. Coleman R.E., Banks L.M., Girgis S.I., et al. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol. 2007;8(2):119-27. doi: 10.1016/S1470-2045(07)70003-7.
  18. Tammela T Endocrine treatment of prosta te cancer. J Steroid Biochem Mol Biol. 2004;92(4):287-95.
  19. Shahinian V.B., Kuo YF, Freeman J.L., Goodwin J.S. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154 64. doi: 10.1056/NEJMoa041943
  20. Smith M.R., Boyce S.P, Moyneur E., et al. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol. 2006;175(1):136-39. doi: 10.1016/S0022-5347(05)00033-9
  21. Mittan D., Lee S., Miller E., et al. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab. 2002;87(8):3656-61. Doi: 10.1210/ jcem.87.8.8782
  22. Lee H., McGovern K., Finkelstein J.S., Smith M.R. Changes in bone mineral density and body composition during initial and longterm gonadotropin-releasing hormone agonist treatment for prostate carcinoma. Cancer. 2005;104(8):1633-37. Doi: 10.1002/ спа 21381
  23. Davidge Pitts C.J., Kearns A.E. Update on medications with adverse skeletal effects. Mayo Clin Proc. 2011;86(4):338-43. Doi: 10.4065/ mcp.2010.0636.
  24. Cromer B.A., Scholes D., Berenson A., et al. Depot medroxyprogesterone acetate and bone mineral density in adolescents - the Black Box Warning: a Position Paper of the Society for Adolescent Medicine. J Adolesc Health Off Publ Soc Adolesc Med. 2006;39(2):296-301. Doi: 10.1016/j. jadohealth.2006.03.011.
  25. Cromer B.A., Bonny A.E., Stager M., et al. Bone Mineral Density in Adolescent Females Using Injectable or Oral Contraceptives: A 24 Month Prospective Study. Fertil Steril. 2008;90(6):2060 67. doi: 10.1016/j.fertnstert.2007.10.070
  26. Lanza L.L., McQuay L.J., Rothman K.J., et al. Use of Depot Medroxyprogesterone Acetate Contraception and Incidence of Bone Fracture. Obstet Gynecol. 2013;121(3):593-600. Doi: 10.1097/ AOG.0b013e318283d1a1
  27. Zaidi M., Davies T.F., Zallone A., et al. Thyroid-stimulating hormone, thyroid hormones, and bone loss. Curr Osteoporos. Rep. 2009;7(2):47-52.
  28. Lakatos P. Thyroid hormones: beneficial or deleterious for bone? Calcif Tissue Int. 2003;73:205-9. doi: 10.1007/s11914-009-0009-0.
  29. Mazziotti G., Sorvillo F, Piscopo M., et al. Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J Bone Miner Res. 2005;20:480-86. doi: 10.1359/JBMR.041126.
  30. Mazziotti G., Porcelli T., Patelli I., et al. Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone. 2010;46(3):747-51. doi: 10.1016/j.bone.2009.10.031.
  31. Faber J., Galloe A.M. Changes in bone mass during prolonged subclinical hyperthyroidism due to l thyroxine treatment: a meta-analysis. Eur J Endocrinol. 1994;130(4):350-56.
  32. Uzzan B., Campos J., Cucherat M., et al. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab. 1996;81(12):4278-89.
  33. Bauer D.C., Ettinger B., Nevitt M.C., Stone K.L. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 2001;134(7):561-68.
  34. Svare A., Nilsen T.I., Bjoro T., et al. Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT2 study. Eur J Endocrinol. 7009;161(5):779-86. doi: 10.1530/EJE-09-0139.
  35. Morris M.S. The association between serum thyroid-stimulating hormone in its reference range and bone status in postmenopausal American women. Bone. 2007;40(4):1128-34. Doi: 10.1016/j. bone.2006.12.001.
  36. Pack A.M., Gidal B., Vazquez B. Bone disease associated with antiepileptic drugs. Cleve Clin J. Med. 2004;71(2):S42-S48. Doi: 10.3949/ ccjm.71.suppl_2.s42.
  37. Pack A.M. Antiepileptic drugs and bone disease. Clin Rev Bone Mineral Metab. 2004;2(2):159-65. doi: 10.1385/BMM:2:2:159.
  38. Andress D.L., Ozuna J., Tirschwell D., et al. Antiepileptic druginduced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781-86.
  39. Petty S.J., O’Brien T.J., Wark J.D. Anti-epileptic medication and bone health. Osteoporos Int. 2007;18:129-42.
  40. Ensrud K.E., Walczak T.S., Blackwell T., et al. Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology. 2004;62(11):2051-57. doi: 10.1212/01. wni.0000125185.74276.d2.
  41. Vestergaard P. Epilepsy, osteoporosis and fracture risk - a meta-anaiysis. Acta Neuroi Scand. 2005;112(5):277-86. doi: 10.1111/j.1600-0404.2005.00474.x.
  42. Haney E.M., Chan B.K., Diem S.J., et ai. Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med. 2007;167(12):1246-51.
  43. Warden S.J., Haney E.M. Skeletal effects of serotonin (5-hydroxytryptamine) transporter inhibition: evidence from in vitro and animal-based studies. J. Musculoskelet Neuronal Interact. 2008; 8(2):121-32.
  44. Schwan S., Haiiberg P. SSRIs, bone mineral density, and risk of fractures - a review. Eur Neuropsychopharmacoi. 2009;19(10):683-92.
  45. Takkouche B., Montes-Martinez A., Giii S.S., Etminan M. Psychotropic medications and the risk of fracture: a meta-anaiysis. Drug Saf. 2007;30(2):171-84. doi: 10.2165/00002018-200730020-00006.
  46. Spangier L., Schoies D., Brunner R.L., et ai. Depressive symptoms, bone ioss, and fractures in postmenopausai women. J. Gen Intern Med. 2008;23(5):567-74. doi: 10.1007/s11606- 008-0525-0.
  47. Richards J.B., Papaioannou A., Adachi J.D., et ai. Effect of seiective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med. 2007;167(2):188-94. Doi: 10.1001/ archinte.167.2.188.
  48. van den Brand M.W., Samson M.M., Pouweis S., et ai. Use of ant_i-depressants and the risk of fracture of the hip or femur. Osteoporos Int. 2009;20(10):1705-13. doi: 10.1007/s00198- 009-0849-6.
  49. Ziere G., Dieieman J.P., van der Cammen T.J., et ai. Seiective serotonin reuptake inhibiting antidepressants are associated with an increased risk of nonvertebrai fractures. J. Ciin Psychopharmacoi. 2008;28(4):411-17.
  50. Wiiiiams L.J., Henry M.J., Berk M., et ai. Seiective serotonin reuptake inhibitor use and bone minerai density in women with a history of depression. Int Ciin Psychopharmacoi. 2008;23(2):84-7. doi: 10.1097/YIC.0b013e3282f2b3bb
  51. Diem S.J., Biackweii T.L., Stone K.L., et ai. Use of antidepressants and rates of hip bone ioss in oider women: the Study of Osteoporotic Fractures. Arch Intern Med. 2007;167(12):1240-45.
  52. Wright M.J., Proctor D.D., Insogna K.L., Kerstetter J.E. Proton pump-inhibiting drugs, caicium homeostasis, and bone heaith. Nutr Rev. 2008;66(2):103-8. doi: 10.1111/j.1753-4887.2008.00015.x.
  53. Yang Y.X. Proton pump inhibitor therapy and osteoporosis. Curr Drug Saf. 2008;3(3):204-9. doi: 10.2174/157488608785699414.
  54. Yang Y.-X., lewis J.D., Epstein S., Metz D.C. Longterm proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947-53. doi: 10.1001/jama.296.24.2947.
  55. Yu E.W., Biackweii T., Ensrud K.E., et ai. Acid-suppressive medications and risk of bone ioss and fracture in oider aduits. Caicif Tissue Int. 2008;83(4):251-59. doi: 10.1007/s00223- 008-9170-1.
  56. Roux C., Briot K., Gossec L., et ai. Increase in vertebrai fracture risk in postmenopausai women using omeprazoie. Caicif Tissue Int. 2009;84(1):13-9. doi: 10.1007/s00223-008-9188-4.
  57. Vestergaard P., Rejnmark L., Mosekiide L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Caicif Tissue Int. 2006;79(2):76-83. doi: 10.1007/s00223-006-0021-7.
  58. Targownik L.E., Lix L.M., Metge C.J., et ai. Use of proton pump inhibitors and risk of osteoporosis-reiated fractures. CMAJ. 2008;179(4):319-26. doi: 10.1503/cmaj.071330.
  59. Kaye J.A., Jick H. Proton pump inhibitor use and risk of hip fractures in patients without major risk factors. Pharmacotherapy. 2008; 28(8):951-59. doi: 10.1592/phco.28.8.951.
  60. Gray S.L., LaCroix A.Z., Larson J., et ai. Proton pump inhibitor use, hip fracture, and change in bone minerai density in postmenopausai women: resuits from the Women's Heaith Initiative. Arch Intern Med. 2070;7 70(9):765-77.
  61. Grey A. Thiazoiidinedione-induced skeietai fragiiity -mechanisms and impiications. Diabet Obes Metab. 2009; 11 (4):275-84. doi: 10.1111/j.1463-1326.2008.00931.x.
  62. Habib Z.A., Havstad S.L., Weiis K., et ai. Thiazoiidinedione use and the iongitudinai risk of fractures in patients with Type 2 diabetes meiiitus. J. Ciin Endocrinoi Metab. 2010;95(2):592-600. doi: 10.1210/jc.2009-1385.
  63. Bodmer M., Meier C., Kraenziin M.E., Meier C.R. Risk of fractures with giitazones: a criticai review of the evidence to date. Drug Saf. 2009;32(7):539-47. doi: 10.2165/00002018200932070-00001.
  64. Grey A., Boiiand M., Gambie G., et ai. The peroxisome proiiferator-activated receptor g agonist rosigiitazone decreases bone formation and bone minerai density in heaithy postmenopausai women: a randomized, controiied triai. J. Ciin Endocrinoi Metab. 2007;92(4):1305-10. Doi: 70.7270/ jc.2006-2646.
  65. Loke YK., Singh S., Furberg C.D. Long-term use of thiazoiidinediones and fractures in Type 2 diabetes: a meta-anaiysis. CMAJ. 2009;180(1):32-9. doi: 10.1503/cmaj.080486.
  66. Dormuth C.R., Carney G., Carieton B., et ai. Thiazoiidinediones and fractures in men and women. Arch Intern Med. 2009;169(15):1395-402. doi: 10.1001/archinternmed.2009.214.
  67. Jones S.G., Momin S.R., Good M.W., et ai. Distai upper and iower iimb fractures associated with thiazoiidinedione use. Am J. Manag Care. 2009;15(8):491-96. doi: 10.1371/journai. pmed.1000154.
  68. Dougias I.J., Evans S.J., Pocock S., Smeeth L. The risk of fractures associated with thiazoiidinediones: a seif-controiied case-series study. PLoS Med. 2009;6(9):E1000154.
  69. Schwartz A.V, Seiimeyer D.E., Vittinghoff E., et ai. Thiazoiidinedione use and bone ioss in oider diabetic aduits. J Ciin Endocrinoi Metab. 2006)97(9):3349 54. doi: 10.1210/jc.2005-2226
  70. Yaturu S., Bryant B., Jain S.K Thiazoiidinedione treatment decreases bone minerai density in Type 2 diabetic men. Diabetes Care. 2007;30(6):1574-76. doi: 10.2337/dc06-2606.
  71. Miyazaki M., Fujikawa Y, Takita C., Tsumura H. Tacroiimus and cyciosporine A inhibit human osteociast formation via targeting the caicineurin-dependent NFAT pathway and an activation pathway for c-Jun or MITF in rheumatoid arthritis. Ciin Rheumatoi. 2007;26:231-39. Doi: 10.1007/ s10067-006-0287-1.
  72. Zawawi M., Dharmapatni A., Cantiey M., et ai. Reguiation of ITAM adaptor moiecuies and their receptors by inhibition of caicineurin-NFAT signaiiing during iate stage osteociast differentiation. Biochem Biophys Res Commun. 2012;427:404-9. doi: 10.1016/j.bbrc.2012.09.077.
  73. Movsowitz C., Epstein S., Faiion M., et ai. Cyciosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinoiogy. 7988)23:2577-77.
  74. Kuiak C., Borba V., Kuiak Junior J., Shane E. Transpiantation osteoporosis. Arq Bras Endocrinoi Metaboi. 2006;50:783-92. doi: 10.1590/s0004-27302006000400023.
  75. Stein B., Haiioran B., Reinhardt T., et ai. Cyciosporin-A increases synthesis of 1,25-dihydroxyvitamin D3 in the rat and mouse. Endocrinoiogy. 1991;128:1369-73.
  76. Ferraccioii G., Casatta L., Bartoii E. Increase of bone minerai density and anaboiic variabies in patients with rheumatoid arthritis resistant to methotrexate after cyciosporin A therapy. J Rheumatoi. 1996;23:1539-42.
  77. Mazzantini M., Di Munno O., Sinigagiia L., et ai. Effect of cyciosporine A on bone density in femaie rheumatoid arthritis patients: resuits from a muiticenter, cross-sectionai study. Ciin Exp Rheumatoi. 2007;25:709-15.
  78. Brown T.T., Qaqish R.B. Antiretrovirai therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS hand Engl. 2006;20(17):2165-74. Doi: 10.1097/ QAD.0b013e32801022eb.
  79. Triant VA, Brown T.T, Lee H., Grinspoon S.K. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499-504. Doi: 10.1210/ jc.2008-0828.
  80. Schwartz A, Leonidas J. Methotrexate osteopathy Skeletal Radiol. 1984;11:13-6.
  81. Pfeilschifter J, Diel I. Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol. 2000;18:1570-93. Doi: 10.1200/ JCO.2000.18.7.1570.
  82. Kock H.J., Handschin A.E. Osteoblast growth inhibition by unfractionated heparin and by low molecular weight heparins: an in-vitro investigation. Clin Appl Thromb Hemost. 2002;8(3):251-55.
  83. Vik A., Brodin E., Sveinbjornsson B., Hansen J.B. Heparin induces mobilization of osteoprotegerin into the circulation. Thromb Haemost. 2007;98(1):148-54.
  84. Douketis J., Ginsberg J., Burrows R., et al. The effects of long-term heparin therapy during pregnancy on bone density. A prospective matched cohort study. Thromb Haemost. 1996:75:254-57.
  85. Barbour L., Kick S., Steiner J., et al. A prospective study of heparin-induced osteoporosis in pregnancy using bone densitometry. Am J Obstet Gynecol. 1994;170:862-69.
  86. Dahlman T. Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol. 1993;168:1265-70.
  87. Monreal M., Lafoz E., Olive A., et al. Comparison of subcutaneous unfractionated heparin with a low molecular weight heparin (Fragmin) in patients with venous thromboembolism and contraindications to coumarin. Thromb Haemost. 1994;71:7-11.
  88. Griffith G.C., Nichols G.Jr., Asher J.D., Flanagan B. Heparin Osteoporosis. JAMA. 1965;193:91-4.
  89. Squires J.W., Pinch L.W Heparin-induced spinal fractures. JAMA. 1979;241(22):2417-18.
  90. Rupp W.M., McCarthy H.B., Rohde T.D., et al. Risk of osteoporosis in patients treated with longterm intravenous heparin therapy Curr Surg. 1982;39(6):419-22.
  91. Jaffe M.D., Willis P.W. Multiple fractures associated with long-term sodium heparin therapy JAMA. 1965;193:158-60.
  92. Pettila V, leinonen P, Markkola A., et al. Postpartum bone mineral density in women treated for thromboprophylaxis with unfractionated heparin or LMW heparin. Thromb Haemost. 2002;87(2): 182-86.
  93. Monreal M., Vinas L., Monreal L., et al. Heparin-related osteoporosis in rats. A comparative study between unfractioned heparin and a low-molecular-weight heparin. Haemostasis. 1990;20(4):204-7.
  94. Lian J., Gundberg C. Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res. 1988;267-91.
  95. Caraballo P, Heit J., Atkinson E., et al. Long-term use of oral anticoagulants and the risk of fracture. Arch Intern Med. 1999;159:1750-56. Doi: 10.1001/ archinte.159.15.1750.
  96. Fiore C., Tamburino C., Foti R., Grimaldi D. Reduced axial bone mineral content in patients taking an oral anticoagulant. South Med J. 1990;83:538-42.
  97. Philip W., Martin J., Richardson J., et al. Decreased axial and peripheral bone density in patients taking longterm warfarin. QJM. 1995;88:635-40.
  98. Piro L., Whyte M., Murphy W., Birge S. Normal cortical bone mass in patients after long term coumadin therapy. J Clin Endocrinol Metab. 1982;54:470-73.
  99. Woo C., Chang L., Ewing S., Bauer D. Osteoporotic Fractures in Men Study Group. Single-point assessment of warfarin use and risk of osteoporosis in elderly men. J Am Geriatr Soc. 2008;56:1171 76. doi: 10.1111/j.1532-5415.2006.01766.x
  100. Jamal S., Browner W., Bauer D., Cummings S. Warfarin use and risk for osteoporosis in elderly women. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1996;126:629-32. doi: 10.7326/0003-4619-126-10-199605150 00006
  101. Huang H.-K., Liu PP-S., Hsu J.-Y, et al. Fracture risks among patients with atrial fibrillation receiving different oral anticoagulants: a real-world nationwide cohort study Eur Heart J. 2020;0:1-9. doi: 10.1093/eurheartj/ehz952.
  102. Huang H.-K., Liu PP-S., Hsu J.-Y., et al. Risk of Osteoporosis in Patients With Atrial Fibrillation Using Non-Vitamin K Antagonist Oral Anticoagulants or Warfarin. J Am Heart Assoc. 2020;9:e013845. doi: 10.1161/JAHA.119.013845.
  103. Rejnmark L., Vestergaard P., Heickendorff L., et al. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med. 2005;257(2):176-84. doi: 10.1111/j.1365-2796.2004.01434.x
  104. Ooms M.E., Lips P, Van Lingen A., Valkenburg H.A. Determinants of bone mineral density and risk factors for osteoporosis in healthy elderly women. J Bone Miner Res. 1993;8(6):669-75
  105. Heidrich FE., Stergachis A., Gross K.M. Diuretic drug use and the risk for hip fracture. Ann Intern Med. 1991;115(1):1-6.
  106. Rashiq S., Logan R.F Role of drugs in fractures of the femoral neck. BMJ. (Clin Res Ed.). 1986;292(6524):861-63.
  107. Cumming R.G., Klineberg R.J. Psychotropics, thiazide diuretics and hip fractures in the elderly. Med J Aust. 1993;158(6):414-17.
  108. Rejnmark L., Vestergaard P., Heickendorff L., et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163 70. doi: 10.1359/JBMR.051003
  109. Rejnmark L., Vestergaard P., Heickendorff L., еt al. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med. 2005;257(2):176 84. doi: 10.1111/j.1365-2796.2004. 01434.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies