Evaluation of the effectiveness and the possibility of optimizing the methodology for analyzing the plasma microRNA-371-3 (HSA-miR-371-3p) level for the diagnosis and monitoring of the effect of therapy of germ cell tumors in men


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The choice of optimal tactics for treating patients with germ cell tumors (GCTs) is based on determining the totality of prognostic factors. Almost all patients with GCTs with a good prognosis can be cured by a rational combination of drug therapy and surgical methods. At the same time, the results of treatment of patients with a poor prognosis remain extremely unsatisfactory. One way to increase the effectiveness of therapy is to search for modern molecular biological factors that can optimize and personalize the treatment approach. Objective: Development of RT-PCR system (polymerase chain reaction with reverse transcription) for miR-351-3 analysis, preliminary assessment of the diagnostic effectiveness of analyzing the concentration of this molecule, determination of the possibility (s) of optimizing the technology and the prospects of introducing into practice a new method for monitoring GCTs based on RT-PCR analysis of miR-371-3. Methods. The design, synthesis and analysis of the RT-PCR system for miR-371-3 detection was carried out using domestic reagents, the diagnostic value of the method was evaluated using the material (plasma) of patients with a verified diagnosis of GCTs (n=13) and healthy donors (n=15). To develop a method for the specific isolation of miR-371-1 from plasma, super-paramagnetic particles (SPMP) and a DNA probe complementary to miR-371-3 were used. Results. An original system for the quantitative analysis of miR-371-3 by the RT-PCR method (ttTR-PCR) was created; the analytical efficiency of this system was shown in a wide range of concentrations of the detected molecule. The plasma miR-371-3 concentration in patients with GCTs and healthy donors was estimated. To increase the sensitivity of the technology, a technique for the specific isolation of miR-371-3 from plasma using SPMP was developed and tested. Conclusion. A qualitative assessment of plasma miR-371-3 level seems to be a promising method for monitoring the effectiveness of GCT therapy, but the technology for analyzing this molecule requires optimization and large-scale clinical validation.

Full Text

Restricted Access

About the authors

M. S Knyazeva

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

V. A Zagoruyko

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

E. V Borisov

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

E. I Sidina

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

N. S Nikiforova

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

M. A Slyusarenko

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

I. V Nazarova

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

A. I Semenova

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

A. K Nosov

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

S. A Protsenko

N.N. Petrov National Medical Research Center of Oncology; Onco-System

St. Petersburg, Russia; Moscow, Russia

A. V Malek

N.N. Petrov National Medical Research Center of Oncology; Onco-System

Email: anastasia@malek.com
Cand. Sci. (Med.), Head of the Laboratory of Subcellular Technologies St. Petersburg, Russia; Moscow, Russia

References

  1. Rajpert-De Meyts E, McGlynn K.A., Okamoto K, et al. Testicular germ cell tumours. Lancet. 2016;387(10029):1762-74. Doi: 10.1016/ S0140-6736(15)00991-5
  2. Einhorn L.H. Treatment of testicular cancer: A new and improved model. J Clin Oncol. 1990;8:1777-81. doi: 10.1200/JCO.1990.8.11.1777.
  3. Honecker F, Aparicio J., Berney D, et al. ESMO Consensus Conference on testicular germ cell cancer: diagnosis, treatment and follow-up. Ann Oncol. 2018;29(8):1658-86. Doi: 10.1093/ annonc/mdy217.
  4. Batool A., Karimi N., Wu X.N., et al. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci. 2019;76(9):1713-27. Doi: 10.1007/ S00018-019-03022-7.
  5. Трякин А.А, Гладков О.А., Матвеев В.Б. и др. Практические рекомендации по лекарственному лечению герминогенных опухолей у мужчин. Практические рекомендации RUSSCO. 2016.
  6. Leao R, Ahmad A.E., Hamilton R.J. Testicular Cancer Biomarkers: A Role for Precision Medicine in Testicular Cancer. Clin Genitourin Cancer 2019;17(1):e176-83. Doi: 10.1016/]. clgc.2018.10.007.
  7. Narita T, Hatakeyama S., Yoneyama T, et al. Clinical implications of serum N- glycan profiling as a diagnostic and prognostic biomarker in germ-cell tumors. Cancer Med. 2017;6(4):739-48. doi: 10.1002/cam4.1035.
  8. Ellinger J, Wittkamp V., Albers P, et al. Cell-Free Circulating DNA: Diagnostic Value in Patients With Testicular Germ Cell Cancer. J Urol. 2009;181:363-371. doi: 10.1016/j.juro.2008.08.118.
  9. Cebotaru C.L., Olteanu E.D., Antone N.Z., et al. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review. Med Pharm Reports. 2016;89(2):203-11. doi: 10.15386/cjmed-570.
  10. Tafrihi M., Hasheminasab E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. MicroRNA. 2018. doi: 10.2174/221153660766 6180827111633.
  11. Wang J., Chen J., Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol. 2016;231(1):25-30. doi: 10.1002/jcp.25056.
  12. Max K.E.A., Bertram K., Akat K.M., et al. Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc. Natl. Acad. Sci. 2018;115(23):E5334-43. doi: 10.1073/pnas.1714397115.
  13. Izzotti A., Carozzo S., Pulliero A., et al. Extracellular MicroRNA in liquid biopsy: applicability in cancer diagnosis and prevention. Am J Cancer Res. 2016;6(7):1461-93.
  14. Toiyama Y, Okugawa Y, Fleshman J., et al. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochim Biophys. Acta - Rev Cancer. 2018;1870(2):274-82. doi: 10.1016/j.bbcan.2018.05.006.
  15. Kashyap D., Kaur H. Cell-free miRNAs as noninvasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci. 2020;246:117417. Doi: 10.1016/j. lfs.2020.117417.
  16. Jiang M., Li X., Quan X., et al. Clinically Correlated MicroRNAs in the Diagnosis of Non-Small Cell Lung Cancer: A Systematic Review and MetaAnalysis. Biomed Res Int. 2018;2018:1-14. doi: 10.1155/2018/5930951.
  17. Git A., Dvinge H., Salmon-Divon M., et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16(5):991-1006. doi: 10.1261/rna.1947110.
  18. Faraldi M., Gomarasca M., Banfi G., Lombardi G. Free Circulating miRNAs Measurement in Clinical Settings: The Still Unsolved Issue of the Normalization. Adv Clin Chem. 2018;87:113-39. doi: 10.1016/bs.acc.2018.07.003.
  19. Palmer R.D., Murray M.J., Saini H.K., et al. Malignant Germ Cell Tumors Display Common MicroRNA Profiles Resulting in Global Changes in Expression of Messenger RNA Targets. Cancer Res. 2010;70(7):2911-23. doi: 10.1158/0008-5472.CAN-09-3301.
  20. Dieckmann K.-P, Spiekermann M., Balks T, et al. MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br J Cancer. 2012;107(10):1754-60. doi: 10.1038/bjc.2012.469.
  21. Myklebust M.P, Rosenlund B., Gjengsts P, et al. Quantitative PCR Measurement of miR-371a-3p and miR-372-p Is Influenced by Hemolysis. Front Genet. 2019;22;10:463. Doi: 10.3389/ fgene.2019.00463.
  22. Spiekermann M., Dieckmann K.-P, Balks T., Bullerdiek J., Belge G. Is relative quantification dispensable for the measurement of microRNAs as serum biomarkers in germ cell tumors? Anticancer Res. 2015;35(1):117-21.
  23. Dieckmann K.-P, Radtke A., Geczi L., et al. Serum Levels of MicroRNA-371a-3p (M371 Test) as a New Biomarker of Testicular Germ Cell Tumors: Results of a Prospective Multicentric Study. J Clin Oncol. 2019;37(16):1412-23. Doi: 10.1200/ JCO.18.01480.
  24. Benes V., Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods. 2010;50:244-49 Doi: 10.1016/j. ymeth.2010.01.026.
  25. Androvic P, Valihrach L., Elling J., et al. Twotailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017;45(15):1-13. doi: 10.1093/nar/gkx588.
  26. Korobkina E.A., Knyazeva M.S.P, Kil Y.V., et al. Comparative analysis of rt-qpcr based methodologies for m1crorna detection. Klin Lab Diagnostika. 2018;63(11):722-28. doi: 10.18821/0869- 2084-2018-63-11-722-728.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies