Endocrine resistance in breast cancer treatment


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

According to the St Gallen Consensus, endocrine-sensitive breast cancer (BC) is defined by the expression of positive steroid receptors. This type of cancer is the most common subtype of breast cancer. Available data suggest that the higher the ER and PR expression, the better outcome for patients with early and advanced breast cancer. Treatment for ER+ BC involves interventions (called endocrine therapy) that suppress estrogen production and/or directly affect the ER. Although endocrine therapy has significantly reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a serious problem. A growing number of mechanisms of endocrine resistance have been reported, including somatic changes, epigenetic changes, and changes in the tumor microenvironment. The article provides a review of the literature on the signaling pathways that regulate tumor growth, the mechanisms of endocrine resistance development, and possible ways to its overcoming.

Full Text

Restricted Access

About the authors

Maryam A. Dzhelyalova

N.N. Petrov National Medical Research Center of Oncology

Email: gub.mariam@gmail.com
Oncologist, Clinical Diagnostic Department 68, Leningradskaya str., Pesochny settlement, St. Petersburg 197758, Russian Federation

V. F Semiglazov

N.N. Petrov National Medical Research Center of Oncology

St. Petersburg, Russia

References

  1. Lin N.U., Winer E.P. Advances in adjuvantendocrine therapy for postmenopausal women.J Clin Oncol. 2008;26:798-805. doi: 10.1200/JCO.2007.15.0946.
  2. Prall O.W., Rogan E.M., Musgrove E.A., et al.c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry.Mol Cell Biol. 1998;18:4499-508. doi: 10.1128/mcb.18.8.4499.
  3. Bocchinfuso W.P., Korach K.S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia. 1997;2:323-34. doi: 10.1023/a:1026339111278.
  4. Aggelis V, Johnston S.R.D. Advances in endocrine-based therapies for estrogen receptor-positive metastatic breast cancer. Drugs. 2019;79:1849-66 doi: 10.1007/s40265-019-01208-8.
  5. Davies C, Pan H., Godwin J., et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptorpositive breast cancer: ATLAS, a randomised trial. Lancet. (London, England). 2013;381:805-16. doi: 10.1016/S0140-6736(12)61963-1.
  6. Pagani O, Regan M.M., Walley B.A., et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med. 2014;371:107-18. Doi: 10.1056/ NEJMoa1404037.
  7. Montagna E., Cancello G., Colleoni M. The aromatase inhibitors (plus ovarian function suppression) in premenopausal breast cancer patients: Ready for prime time? Cancer Treatm Rev. 2013;39(8):886-90. Doi: https://doi. org/10.1016/j.ctrv.2013.04.007
  8. Torrisi R., Rota S., Losurdo A., et al. Aromatase inhibitors in premenopause: Great expectations fulfilled? Critical Rev Oncol Hematol. 2016;82-9. doi: 10.1016/j.critrevonc.2016.08.009.
  9. Wardell S.E., Marks J.R., McDonnell D.P The turnover of estrogen receptor alpha by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochem Pharmacol. 2011;82:122-30. doi: 10.1016/j.bcp.2011.03.031.
  10. Wittmann B.M., Sherk A., McDonnell D.P Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. Cancer Res. 2007;67:9549-60. doi: 10.1158/0008-5472.CAN-07-1590.
  11. Guan J., Zhou W., Hafner M., et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell. 2019;178:949-63. e18. doi: 10.1016/j.cell.2019.06.026.
  12. Pan H., Gray R., Braybrooke J., et al. 20-year risks of breastcancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377:1836-46 doi: 10.1056/NEJMoa1701830.
  13. Sledge G.W., Toi M., Neven P, et al. MONARCH 2: Abemaciclib in Combination with Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J. Clin. Oncol. 2017;35:2875-84. doi: 10.1200/JCO.2017.73.7585.
  14. Roger P, Sahla M.E., Makela S., et al. Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res. 2001;61:2537-41.
  15. Mann S., Laucirica R., Carlson N., et al. Estrogen receptor beta expression in invasive breast cancer. Hum Pathol. 2001;32:113-18. Doi: 10.1053/ hupa.2001.21506.
  16. Zhang Q.X., Borg A., Wolf D.M., et al. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 1997;57:1244-49.
  17. Jeselsohn R., Yelensky R., Buchwalter G., et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20:1757-67. doi: 10.1158/1078-0432.CCR-13-2332.
  18. Merenbakh-Lamin K., Ben-Baruch N., Yeheskel A., et al. D538G mutation in estrogen receptor-alpha: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 2013;73:6856-64. doi: 10.1158/0008-5472.
  19. Robinson D.R., Wu YM., Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45:1446-51. doi: 10.1038/ng.2823.
  20. Toy W., Shen Y, Won H., et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 2013;45:1439-45. doi: 10.1038/ng.2822.
  21. Razavi P, Chang M.T., Xu G., et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34:427-38. doi: 10.1016/j.ccell.2018.08.008.
  22. Fribbens C., O'Leary B., Kilburn et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol. 2016;34:2961-68. Doi: 10.1200/ JCO.2016.67.3061.
  23. Schiavon G., Hrebien S., Garcia-Murillas I., et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 2015;7:313ra182. doi: 10.1126/scitranslmed. aac7551.
  24. Jeselsohn R., Buchwalter G., De Angelis C., et al. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573-83. Doi: 10.1038/ nrclinonc.2015.117.
  25. Toy W., Weir H., Razavi P, et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov. 2017;7:277-87. doi: 10.1158/2159-8290.
  26. Fanning S.W., Greene G.L. Next-generation ERalpha inhibitors for endocrine-resistant ER+ breast cancer. Endocrinol. 2019;160:759-69. doi: 10.1210/en.2018-01095.
  27. Magnani L., Frige G., Gadaleta R.M., et al. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nat Genet. 2017;49:444-50.
  28. Goetz M.P, Toi M., Campone M., et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J Clin Oncol. 2017;35:3638-46.
  29. Hilton H.N., Doan T.B., Graham J.D., et al. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget. 2014;5:8651-64. Doi: 10.18632/ oncotarget.2354.
  30. Blows F.M., Driver K.E., Schmidt M.K., et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7:e1000279. doi: 10.1371/journal.pmed.1000279.
  31. Arpino G., Weiss H., Lee A.V., et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst. 2005;97:1254-61. doi: 10.1093/jnci/dji249.
  32. Daniel A.R., Gaviglio A.L., Knutson T.P, et al. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene. 2015;34:506-15. doi: 10.1038/onc.2013.579.
  33. Kurokawa H., lenferink A.E., Simpson J.F., et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000;60:5887-94.
  34. Croessmann S., Formisano L., Kinch L.N., et al. Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/ HER2 mutant breast cancer. Clin. Cancer Res. 2019;25:277-89. doi: 10.1158/1078-0432. CCR-18-1544.
  35. Nayar U., Cohen O., Kapstad C., et al. Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat Genet. 2019;51:207-16. doi: 10.1038/s41588-018-0287-5.
  36. Smyth L.M., Piha-Paul S.A., Won H.H., et al. Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic breast cancer. Cancer Discov. 2020;10:198-213. doi: 10.1158/2159-8290.
  37. Levine K.M., Priedigkeit N., Basudan A., et al. FGFR4 overexpression and hotspot mutations in metastatic ER+ breast cancer are enriched in the lobular subtype. NPJ. Breast Cancer. 2019;5:19. doi: 10.1038/s41523-019-0114-x.
  38. Kim R.D., Sarker D., Meyer T., et al. First-inhuman phase I study of Fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 2019;9:1696-707.
  39. Saal L.H., Holm K., Maurer M., et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554-59. doi: 10.1158/00085472-CAN-04-3913.
  40. Stemke-Hale K., Gonzalez-Angulo A.M., Lluch A., et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKE mutations in breast cancer. Cancer Res. 2008;68:6084-91. doi: 10.1158/0008-5472.CAN-07-6854.
  41. Miller T.W., Hennessy B.T., Gonzalez-Angulo A.M., et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest. 2010;120:2406-13. doi: 10.1172/JCI41680.
  42. Sanchez C.G., Ma C.X., Crowder R.J., et al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res. 2011;13:R21. Doi: 10.1186/ bcr2833.
  43. Loibl S., Treue D., Budczies J., et al. Mutational diversity and therapy response in breast cancer: A sequencing analysis in the neoadjuvant GeparSepto trial. Clin Cancer Res. 2019;25:3986-95. doi: 10.1158/1078-0432.CCR-18-3258.
  44. Gonzalez-Angulo A.M., Stemke-Hale K., Palla S.L., et al. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res. 2009;15:2472-78. doi: 10.1158/1078-0432.CCR-08-1763.
  45. Andre F, Ciruelos E., Rubovszky G., et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929-40. Doi: 10.1056/ NEJMoa1813904.
  46. Baselga J., Semiglazov VF., Dam P, et al. Phase II Randomized Study of Neoadjuvant Everolimus Plus Letrozole Compared With Placebo Plus Letrozole in Patients With Estrogen Receptor-Positive Breast Cancer. J Clin Oncol. 2009;27(16):26307. doi: 10.1200/JC0.2008.18.8391.
  47. Hortobagyi G.N., Stemmer S.M., Burris H.A., et al. Ribociclib as First-Line Therapy for HRPositive, Advanced Breast Cancer. N Engl J Med. 2016;375:1738-48. Doi: 10.1056/ NEJMoa1609709.
  48. Jones R.H., Carucci M., Casbard A.C., et al. Capivasertib (AZD5363) plus fulvestrant versus placebo plus fulvestrant after relapse or progression on an aromatase inhibitor in metastatic ER -positive breast cancer (FAKTION): a randomized, doubleblind, placebo-controlled, phase II trial. J Clin Oncol. 2019;37:1005. doi: 10.1016/S1470-2045(19)30817-4.
  49. Turner N., Kingston B., Kilburn L., et al. Results from the plasmaMATCH trial: a multiple parallel cohort, multi-centre clinical trial of circulating tumour DNA testing to direct targeted therapies in patients with advanced breast cancer (CRUK/15/010). Cancer Res. 2020;80:Abstract GS3-06. doi: 10.1158/1538-7445.SABCS19-GS3-06.
  50. Hyman D.M., Smyth L.M., Donoghue M.T.A., et al. AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol. 2017;35:2251-59. doi: 10.1200/JCO.2017.73.0143.
  51. Angus L., Smid M., Wilting S.M., et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet. 2019;51:1450-58. https://doi. org/10.1038/s41588-019-0507-7
  52. Pearson A., Proszek, P, Pascual J., et al. Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin. Cancer Res. 2020;26:608-22. doi: 10.1158/1078-0432.CCR-18-4044.
  53. O'Leary B., Cutts R.J., Liu Y., et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 2018;8:1390-403. doi: 10.1158/2159-8290.CD-18-0264.
  54. Fribbens C., Garcia Murillas I., Beaney M., et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol. 2018;29:145-53. doi: 10.1093/annonc/mdx483.
  55. Miller T.W., Balko J.M., Ghazoui Z., et al. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res. 2011;17:2024-34. doi: 10.1158/1078-0432.CCR-10-2567.
  56. Filippova G.N., Fagerlie S., Klenova E.M., et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian cmyc oncogenes. Mol Cell Biol. 1996;16:2802-13. Doi: 10.1128/ mcb.16.6.2802.
  57. Chen H., Liu H., and Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018;3:5. Doi: https://doi. org/10.1038/s41392-018-0008-7
  58. Delmore J.E., issa G.C., Lemieux M.E., et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904-17. doi: 10.1016/j.cell.2011.08.017.
  59. Toska E., Osmanbeyoglu H.U., Castel F.I., et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355:1324-30. doi: 10.1126/science.aah6893.
  60. Rheinbay E., Parasuraman P, Grimsby J., et al. Recurrent and functional regulatory mutations in breast cancer. Nature. 2017;547:55-60. doi: 10.1038/nature22992.
  61. Haricharan S., Bainbridge M.N., Scheet P, Brown PH. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data. Breast Cancer Res Treat. 2014;146:211-20. Doi: 10.1007/ s10549-014-2991-x.
  62. Haricharan S., Punturi N., Singh P., et al. Loss of MutL disrupts CHK2-dependent cell-cycle control through CDK4/6 to promote intrinsic endocrine therapy resistance in primary breast cancer. Cancer Discov. 2017;7:1168-83. doi: 10.1158/2159-8290.CD-16-1179.
  63. Patten D.K., Corleone G., Gyorffy B., et al. Enhancer mapping uncovers phenotypic. Nat Med. 2018;24:1469-80. doi: 10.1038/s41591-018-0091-x
  64. Stone A., Zotenko E., Locke W.J., et al. DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer. Nat Commun. 2015;6:7758. Doi: 10.1038/ ncomms8758.
  65. Carroll J.S., Meyer C.A., Song J., et al. Genomewide analysis of estrogen receptor binding sites. Nat Genet. 2006;38:1289-97. doi: 10.1038/ng1901.
  66. Fu X., Jeselsohn R., Pereira R., et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci USA. 2016;113:E6600-609. Doi: 10.1073/ pnas.1612835113.
  67. Johmura Y, Maeda I., Suzuki N., et al. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J Clin Invest 2018;128:5603-19. doi: 10.1172/JCI121679.
  68. Lu R., Hu X., Zhou J., et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ERalpha-positive breast cancer by degradation of NCoR. Nat. Commun. 2016;7:12044. doi: 10.1038/ncomms12044.
  69. McCart Reed A.E., Kutasovic J.R., Lakhani S.R., Simpson PT. Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics. Breast Cancer Res. 2015;17:12. doi: 10.1186/s13058-015-0519-x.
  70. Metzger Filho O., Giobbie-Hurder A., Mallon E., et al. Relative effectiveness of letrozole compared with tamoxifen for patients with lobular carcinoma in the BIG 1-98 trial. J. Clin. Oncol. 2015;33:2772 79. doi: 10.1200/JCO.2015.60.8133
  71. Sikora M.J., Cooper K.L., Bahreini A., et al. Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. Cancer Res. 2014;74:1463-74. doi: 10.1158/0008-5472.CAN-13-2779.
  72. Sikora M.J., Jacobsen B.M., Levine K., et al. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res. 2016;18:92. doi: 10.1186/s13058-016-0748-7.
  73. Du T, Sikora M.J., Levine K.M., et al. Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res. 2018;20:106. doi: 10.1186/s13058-018-1041-8.
  74. Desmedt C., Zoppoli G., Gundem G., et al. Genomic characterization of primary invasive lobular breast cance. J Clin Oncol. 2016;34:872-1881. doi: 10.1200/JCO.2015.64.0334.
  75. Morotti M., Bridges E., Valli A., et al. induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer. Proc Natl Acad Sci U S A. 2019;116:12452-61. doi: 10.1073/pnas.1818521116.
  76. Houthuijzen J.M., Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastas Rev. 2018;37:577-97. doi: 10.1007/s10555-018-9768-3.
  77. Brechbuhl H.M., Finlay-SchultzJ., Yamamoto T.M., et al. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clin Cancer Res. 2017;23:1710-21. doi: 10.1158/1078-0432.CCR-15-2851.
  78. Desrochers L.M., Antonyak M.A., Cerione R.A. Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell. 2016;37:301-9. Doi: 10.1016/j. devcel.2016.04.019.
  79. Sansone P, Berishaj M., Rajasekhar V.K., et al. Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles. Cancer Res. 2017,77:1927 doi: 10.1158/0008-5472.CAN-16-2129.
  80. Joffroy C.M., Buck M.B., Stope M.B., et al. Antiestrogens induce transforming growth factor betamediated immunosuppression in breast cancer. Cancer Res. 2010;70:1314-22. doi: 10.1158/0008-5472.can-09-3292.
  81. Dunbier A.K., Ghazoui Z., Anderson H., et al. Molecular profiling of aromatase inhibitor-treated postmenopausal breast tumors identifies immune-related correlates of resistance. Clin Cancer Res. 2013;19:2775-86. doi: 10.1158/1078-0432. CCR-12-1000.
  82. Loi S., Sirtaine N., Piette F., et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860-67. Doi: 10.1200/ JCO.2011.41.0902.
  83. Rugo H.S., Delord J.P, Im S.A., et al. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. Clin Cancer Res. 2018;24:2804-11. doi: 10.1158/1078-0432.CCR-17-3452.
  84. Liu L., Shen Y, Zhu X., et al. ERalpha is a negative regulator of PD-L1 gene transcription in breast cancer. Biochem Biophys Res Commun. 2018;505:157-61. Doi: 10.1016/j. bbrc.2018.09.005.
  85. Anurag M., Zhu M., Huang C., et al. Immune checkpoint profiles in luminal B breast cancer (Alliance). J Natl Cancer Inst. 2020;1 12(7):737-46. doi: 10.1093/jnci/djz213.
  86. Miller T.W., Balko J.M., Fox E.M., et al. ERalphadependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 2011;1:338-51. doi: 10.1158/2159-8290.CD-11-0101.
  87. Butt A.J., McNeil C.M., Musgrove E.A., Sutherland R.L. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr. Relat. Cancer. 2005;12(Suppl. 1):S47-59. doi: 10.1677/erc.1.00993.
  88. Span PN., Tjan-Heijnen V.C., Manders P, Beex L.V, Sweep C.G. Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene. 2003;22:4898-904. Doi: 10.1038/ sj.onc.1206818.
  89. Turner N.C., Liu Y, Zhu Z., et al. Cyclin E1 Expression and Palbociclib Efficacy in Previously Treated Hormone Receptor-Positive Metastatic Breast Cancer. J Clin Oncol. 2019;37(14):1169- doi: 10.1200/JCO.18.00925.
  90. Martinez V.G., O'Driscoll L. Neuromedin U drives increased expression of TGFb1 in HER2-positive breast cancer cells and their extracellular vesicles: a novel biomarker of response to HER-targeted drugs. Cancer Res. 2016;76(Suppl. 14, abstr. LB-116). doi: 10.1080/21645515.2017.1327107.
  91. Martinez V.G., Crown J., Porter R.K., et al: Neuromedin U alters bioenergetics and expands the cancer stem cell phenotype in HER2-positive breast cancer. Int J Cancer. 2017;140:2771-84. doi: 10.1002/ijc.30705.
  92. Caldon C.E., Musgrove E.A: Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div. 2010;5:2. doi: 10.1186/1747-1028-5-2.
  93. Costa C., Wang Y, Ly A., et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kalpha inhibitors in breast cancer. Cancer Discov. 2020;10:72-85. doi: 10.1158/2159-8290. CD-18-0830.
  94. Formisano L., Lu Y, Servetto A., et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun. 2019;10:1373. doi: 10.1158/2159-8290. CD-18-0830.
  95. Li Z., Razavi P, Li Q., et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 2018;34:893-905.e8. Doi: 10.1016/j. ccell.2018.11.006.
  96. Vasan N., Baselga J., Hyman D.M. A view on drug resistance in cancer. Nature. 2019;575:299-309. doi: 10.1038/s41586-019-1730-1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies