Взаимосвязь сердечно-сосудистых заболеваний с повышением проницаемости кишечной стенки: результаты научных и контролируемых клинических исследований


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

На сегодняшний день появляется все больше данных, свидетельствующих о роли нарушений структуры кишечного барьера у пациентов с сердечно-сосудистыми заболеваниями. Это связано с тем, что при повышении проницаемости кишечника создаются условия для транслокации из просвета кишечника биологически активных веществ, бактериальных эндотоксинов, их антигенных детерминант и непосредственно самих микроорганизмов. Это несет за собой стимуляцию процессов атерогенеза, воспаления низкой степени выраженности и даже напрямую оказывает повреждающее действие на кардиомиоциты в силу экспрессии на них рецепторов, с которыми способны связываться липополисахариды бактериального происхождения, приводя к повреждению миокарда, снижая его сократимость и стимулируя в нем провоспалительные сдвиги. Эндотоксины кишечного происхождения способны индуцировать окислительную модификацию липопротеидов низкой плотности (ЛПНП), повреждение эндотелиоцитов и даже стимулировать рекрутирование клеток воспаления, что в конечном счете может инициировать и усугублять атеросклеротическое поражение сосудистого русла. В вопросе повышения проницаемости кишечной стенки играет роль множество факторов, однако центральное значение отводится нарушению структуры и экспрессии белков плотных контактов: окклюдина, клаудинов, трицеллюлина и Zonula occludens. Именно они обеспечивают поддержание барьерной функции в области межклеточных контактов энтероцитов. В настоящее время активно изучаются возможности медикаментозной коррекции повышения проницаемости кишечной стенки. Новым препаратом, способным восстанавливать нарушенную проницаемость кишечного барьера, является ребамипид, который действует на всем протяжении желудочно-кишечного тракта (ЖКТ) в отличие от гастро- и энтеропротекторов и позволяет непосредственно восстанавливать структуру плотных контактов. Ребамипид также оказывает целый спектр дополнительных плейтропных действий, включая стимуляцию секреции слизи, улучшение микроциркуляции в слизистой оболочке и даже положительно влияя на компоненты микробиома кишечника. Кроме того, согласно имеющимся данным исследований, влияние ребамипида может выходить за рамки ЖКТ ввиду того, что продемонстрирована антиатеросклеротическая и противовоспалительная активность препарата, заключающаяся в снижении количества провоспалительных цитокинов и гистологически верифицированного уменьшения числа очагов атеросклеротического поражения магистральных сосудов при его применении. Отдельного внимания заслуживает и отличный профиль безопасности терапии ребамипидом - назначение его даже в дозах, существенно превышающих терапевтические, не сопровождалось развитием нежелательных лекарственных реакций. Исходя из этого, можно рассматривать данный препарат не только как инструмент непосредственно защиты ЖКТ, но и как перспективный препарат для комплексной терапии пациентов кардиологического профиля.

Полный текст

Доступ закрыт

Об авторах

О. Д Остроумова

Российская медицинская академия непрерывного профессионального образования; Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: ostroumova.olga@mail.ru
д.м.н., профессор, зав. кафедрой терапии и полиморбидной патологии, Российская медицинская академия непрерывного профессионального образования; профессор кафедры клинической фармакологии и пропедевтики внутренних болезней, Первый московский государственный медицинский университет им. И.М. Сеченова Москва, Россия

А. И Кочетков

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

Е. Е Павлеева

Московский государственный медико-стоматологический университет им. А.И. Евдокимова

Москва, Россия

О. В Головина

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

Н. А Араблинский

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Москва, Россия

Список литературы

  1. Lewis C.V., Taylor W.R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. Am J Physiol Heart Circ Physiol. 2020;319(6):H1227-33. Doi: 10.1152/ ajpheart.00612.2020.
  2. Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis. 2016;1(3):135-45. doi: 10.1159/000447252.
  3. Tr0seid M., Andersen G.O., Broch K., Hov J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020;52:102649. doi: 10.1016/j.ebiom.2020.102649.
  4. Bischoff S.C., Barbara G., Buurman W., et al. Intestinal permeability - a new target for disease prevention and therapy. BMC. Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
  5. Groschwitz K.R., Hogan S.P Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3-20; quiz 21-2. Doi: 10.1016/j. jaci.2009.05.038.
  6. Raleigh D.R., Marchiando A.M., Zhang Y., et al. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 2010;21(7):1200-13. doi: 10.1091/mbc.e09-08-0734.
  7. Ulluwishewa D., Anderson R.C., McNabb W.C., et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141(5):769-76. Doi: 10.3945/ jn.110.135657.
  8. Johansson M.E., Thomsson K.A., Hansson G.C. Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. J Proteome Res. 2009;8(7):3549-57. doi: 10.1021/pr9002504.
  9. Feng Y., Huang Y., Wang Y., et al. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One. 2019;14(6):e0218384. doi: 10.1371/journal. pone.0218384.
  10. Li J.Y., Chassaing B., Tyagi A.M., et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049-63. Doi: 10.1172/ JCI86062
  11. Rao R.K., Basuroy S., Rao V.U., et al. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. 2002;368(Pt. 2):471-81. Doi: 10.1042/ BJ20011804.
  12. Menard S., Cerf-Bensussan N., Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 2010;3(3):247-59. Doi: 10.1038/ mi.2010.5.
  13. Spadoni I., Zagato E., Bertocchi A., et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Sci. 2015;350(6262):830-34. doi: 10.1126/science.aad0135.
  14. Battson M.L., Lee D.M., Li Puma L.C., et al. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. Am J Physiol Heart Circ Physiol. 2019;317(6):H1210-20. doi: 10.1152/ajpheart.00346.2019.
  15. Sandek A, Swidsinski A., Schroedl W., et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014;64(11):1092-102. Doi: 10.1016/j. jacc.2014.06.1179.
  16. Zhou X., Li J., Guo J., et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66. doi: 10.1186/s40168-018-0441-4.
  17. Zhang L., Wang F., Wang J., et al. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J Cell Mol Med. 2020;24(9):5205-12. doi: 10.1111/jcmm.15173.
  18. Pasini E., Aquilani R., Testa C., et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC. Heart Fail. 2016;4(3):220-27. Doi: 10.1016/j. jchf.2015.10.009.
  19. Li C, Gao M., Zhang W., et al. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci Rep. 2016;6:29142. doi: 10.1038/srep29142.
  20. Ghosh S.S., Bie J., Wang J., Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One. 2014;9(9):e108577. doi: 10.1371/journal. pone.0108577.
  21. Li J., Zhao F., Wang Y., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi: 10.1186/s40168-016-0222-x.
  22. Ejtahed H.S., Ardeshirlarijani E., Tabatabaei-Malazy O., et al. Effect of probiotic foods and supplements on blood pressure: a systematic review of meta-analyses studies of controlled trials. J Diab Metab Disord. 2020;19(1):617-23. Doi: 10.1007/ s40200-020-00525-0.
  23. Kim S., Goel R., Kumar A., et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. (Lond). 2018;132(6):701-18. doi: 10.1042/CS20180087.
  24. Santisteban M.M., Qi Y., Zubcevic J., et al. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res. 2017;120(2):312-23. doi: 10.1161/CIRCRESAHA.116.309006.
  25. Hu J., Luo H., Wang J., Tang W., Lu J., Wu S., Xiong et al. Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med. 2017;49(8):e370. Doi: 10.1038/ emm.2017.122.
  26. Battson M.L., Lee D.M., Jarrell D.K., et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468-77. doi: 10.1152/ajpendo.00187.2017.
  27. Rogler G., Rosano G. The heart and the gut. Eur Heart J. 2014;35(7):426-30. Doi: 10.1093/ eurheartj/eht271.
  28. Wang Z., Klipfell E., Bennett B.J., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. Doi: 10.1038/ nature09922.
  29. Konter J.M., Parker J.L., Baez E., et al. Adiponectin attenuates lipopolysaccharide-induced acute lung injury through suppression of endothelial cell activation. J Immunol. 2012;188(2):854-63. doi: 10.4049/jimmunol.1100426.
  30. Cui L., Zhao T., Hu H., et al. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. Biomed Res Int. 2017;20 1 7:3796359. doi: 10.1155/2017/3796359.
  31. Jie Z., Xia H., Zhong S.L., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. Doi: 10.1038/ s41467-017-00900-1.
  32. Zhu Q., Gao R., Zhang Y., et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018;50(10):893-903. doi: 10.1152/physiolgenomics.00070.2018.
  33. Karlsson F.H., Fak F., Nookaew I., et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. doi: 10.1038/ncomms2266.
  34. Roediger W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterol. 1982;83(2):424-29.
  35. Marques F.Z., Nelson E., Chu P.Y., et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135(10):964-77. doi: 10.1161/CIRCULATIONAHA.116.024545.
  36. Arutyunov G.E., Kostyukevich O.I., Serov R.A., et al. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008;125(2):240-45. doi: 10.1016/j.ijcard.2007.11.103.
  37. Sandek A., Bauditz J., Swidsinski A., et al. et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561-69. doi: 10.1016/j.jacc.2007.07.016.
  38. Anker S.D., Egerer K.R., Volk H.D., et al. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol. 1997;79(10):1426-30. doi: 10.1016/s0002-9149(97)00159-8.
  39. Kumar A., Haery C., Parrillo J.E. Myocardial dysfunction in septic shock: Part I. Clinical manifestation of cardiovascular dysfunction. J Cardiothorac Vasc Anesth. 2001;15(3):364-76. doi: 10.1053/jcan.2001.22317.
  40. Gao C.Q., Sawicki G., Suarez-Pinzon W.L., et al. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res. 2003;57(2):426-33. doi: 10.1016/s0008-6363(02)00719-8.
  41. Genth-Zotz S., von Haehling S., Bolger A.P, et al. Pathophysiologic quantities of endotoxin-induced tumor necrosis factor-alpha release in whole blood from patients with chronic heart failure. Am J Cardiol. 2002;90(11):1226-30. Doi: 10.1016/ s0002-9149(02)02839-4.
  42. Peschel T., Schönauer M., Thiele H., et al. Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail. 2003;5(5):609-14. doi: 10.1016/s1388-9842(03)00104-1. Erratum in: Eur J Heart Fail. 20041;6(2):245.
  43. Naito Y., Yoshikawa T. Rebamipide: a gastrointestinal protective drug with pleiotropic activities. Expert. Rev. Gastroenterol. Hepatol. 2010;4(3):261-70. doi: 10.1586/egh.10.25.
  44. Lai Y., Zhong W., Yu T., et al. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of ß-Catenin. PLoS One. 2015;10(7):e0132031. doi: 10.1371/journal.pone.0132031.
  45. Watanabe T., Takeuchi T., Handa O., et al. A multicenter, randomized, double-blind, placebo-controlled trial of high-dose rebamipide treatment for low-dose aspirin-induced moderate-to-severe small intestinal damage. PLoS One. 2015;10(4):e0122330. doi: 10.1371/journal. pone.0122330.
  46. Yasuda-Onozawa Y., Handa O., Naito Y., et al. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 2017;16(6):8216-22. Doi: 10.3892/ mmr. 2017.7647.
  47. Akagi S., Fujiwara T., Nishida M., et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. Doi: 10.1186/ s40780-019-0146-2.
  48. Tarnawski A.S., Chai J., Pai R., Chiou S.K. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sei. 2004;49(2):202-9. doi: 10.1023/b:ddas.0000017439.60943.5c.
  49. Jhun J., Kwon J.E., Kim S.Y, et al. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation. PLoS One. 2017;12(2):e0171674. doi: 10.1371/journal. pone.0171674.
  50. Choe J.Y., Park K.Y., Lee S.J., et al. Rebamipide inhibits tumor necrosis factor-a-induced interleukin-8 expression by suppressing the NF-kB signal pathway in human umbilical vein endothelial cells. Inflamm Res. 2010;59(12):1019-26. doi: 10.1007/s00011-010-0221-5.
  51. Tanigawa T., Watanabe T., Otani K., et al. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of a-defensin 5. Eur J Pharmacol. 2013;704(1-3):64-9. doi: 10.1016/j.ejphar.2013.02.010

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах