Predictors of severe course of disease and high mortality among patients with COVID-19 and diabetes mellitus


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A number of studies examining the new coronavirus infection COVID-19 (COronaVIrus Disease 2019) have demonstrated the most severe course of the disease in patients with diabetes mellitus (DM). Hyperglycemia combined with other risk factors can potentiate immune and inflammatory responses, aggravating the course of COVID-19 with potential fatal outcome. Most of these findings are preliminary and require further research. The high mortality rate in patients with COVID-19 and diabetes mellitus determines the relevance of the analysis of risk factors for unfavorable outcomes of the disease to justify the tactics of managing patients of this category.

Full Text

Restricted Access

About the authors

M. Z Ivanova

Clinical Hospital № 1 of the Administrative Department of the President of the Russian Federation

Moscow, Russia

Inessa B. Zhurtova

Kabardino-Balkarian State University n.a. H.M. Berbekov

Email: zhin07@mail.ru
Dr. Sci. (Med.), Professor, Department of Faculty Therapy 5 Gorky St., Nalchik 360000, Russian Federation

S. Kh Sizhazheva

Kabardino-Balkarian State University n.a. H.M. Berbekov

Nalchik, Russia

A. M Gubachikova

Kabardino-Balkarian State University n.a. H.M. Berbekov

Nalchik, Russia

References

  1. Verity R., et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet. Infect Dis. 2020;20:669-77. doi: 10.1016/S1473-3099(20)30243-7.
  2. Perez-Saez J., et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet. Infect Dis. 2020;S1473-3099(20)30584-3. doi: 10.1016/S1473-3099(20)30584-3.
  3. Перетимин Г. (при участии Ткачева И.). Число умерших россиян COVID-19 превысило 200 тыс. человек. РБК, 05.03.2021.
  4. Chen N., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Lancet 2020;395:507-13. doi: 10.1016/S0140-6736(20)30211-7.
  5. Goyal P, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. 2020;382:2372-374. Doi.: 10.1056/NEJMc2010419.
  6. Zhang H., Penninger J.M., Li Y., et al. Angiotensinconverting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Int Care Med. 2020;46:586-90. Doi.: 10.1007/s00134-020-05985-9.
  7. Walls A.C., Park Y.J., Tortorici M.A., et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020.
  8. Li W., Moore M.J., Vasilieva N., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-54. doi: 10.1038/nature02145.
  9. Liu F., Long X., Zou W., et al. Highly ACE2 Expression in Pancreas May Cause Pancreas Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020 Aug; 18(9): 2128-2130.e2. doi: 10.1101/2020.02.28.20029181.
  10. Zheng Y.-Y., Ma Y.-T, Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;21(8):3003. doi: 10.3390/ijms21083003.
  11. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet. Respir Med. 2020;8(5):475-81. doi: 10.1016/S2213-2600(20)30079-5.
  12. Zhang J.J., Dong X., Cao Y.Y., et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-1741. doi: 10.1111/all.14238.
  13. Huang C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5.
  14. Zhang W., Xu Y.Z., Liu B., et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet induced nonalcoholic steatohepatitis. Sci World J. 2014;2014:603409. doi: 10.1155/2014/ 603409.
  15. Fernandez C., Rysa J., Almgren P., et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med. 2018;284:377-87. doi: 10.1111/joim.12783.
  16. Chen X., Hu W., Ling J., et al. Hypertension and diabetes delay the viral clearance in COVID-19 patients (Preprint). medRxiv: 2020.2003.2022.20040774, 2020. doi: 10.1101/2020.03.22.20040774.
  17. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239-42. doi: 10.1001/jama.2020.2648.
  18. Mehta, McAuley D.F., Brown M., et al. Across Speciality Collaboration UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
  19. Yang J., Zheng Y., Gou X., et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect. Dis. 2020;94:91-5. doi: 10.1016/j.ijid.2020.03.017.
  20. Шестакова М.В., Мокрышева Н.Г., Дедов И.И. Сахарный диабет в условиях вирусной пандемии COVID-19: особенности течения и лечения. Сахарный диабет. 2020;23(2):132-9. doi: 10.14341/ DM12418.
  21. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529-39. doi: 10.1007/s00281-017-0629-x.
  22. Wang S., et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study. Diabetol. 2020;63:2102-2111. doi: 10.1007/s00125-020-05209-1.
  23. Bode B., Garrett V., Messier J., et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diab Sci Technol. 2020:1-9.
  24. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. Respir Med. 2020;8:420-22. doi: 10.1016/S2213-2600(20)30076-X.
  25. Codo A.C., et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1a/glycolysis-dependent axis. Cell Metab. 2020;32:437-46.e5. doi: 10.1016/j.cmet.2020.07.007.
  26. Zhu, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068-1077.e3. doi: 10.1016/j.cmet.2020.04.021.
  27. Critchley J.A., et al. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diab Care. 2018;41:2127-35. doi: 10.2337/dc18-0287.
  28. Wu L., Girgis C.M., Cheung N.W. COVID-19 and diabetes: insulin requirements parallel illness severity in critically unwell patients. Clin Endocrinol. 2020;93:390-93. doi: 10.1111/cen.14288.
  29. Hadjadj J., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Sci. 2020;369:718-24. doi: 10.1126/science.abc6027.
  30. Zhou F., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62. doi: 10.1016/S0140-6736(20)30566-3.
  31. Chen I.Y., Moriyama M., Chang M.F., Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50. doi: 10.3389/fmicb.2019.00050.
  32. Tang X., et al. Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest. 2020;158:195-205. doi: 10.1016/j.chest.2020.03.032.
  33. Vaduganathan M., et al. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med. 2020;382:1653-59. doi: 10.1056/NEJMsr2005760.
  34. Sestan M., et al. Virus-induced interferon-y causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity. 2018;49:164-77.e6. doi: 10.1016/j.immuni.2018.05.005.
  35. Zeng Z., et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit Care. 2020;24(1):525. doi: 10.1186/s13054-020-03255-0.
  36. Schwartz S.S., et al. The time is right for a new classification system for diabetes: rationale and implications of the ß-cell-centric classification schema. Diab Care 2016;39:179-86. doi: 10.2337/dc15-1585.
  37. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844-47. Doi: 10.1111/ jth.14768.
  38. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19 - preliminary report. N Engl J Med. 20215;384(8):693-704. doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies