Tobacco smoking as a risk factor for the development of drug-induced diseases


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

More than half of the world’s people take at least one prescription drug. The active use of drugs has led to an increased risk of developing complications of pharmacotherapy, as well as drug-induced diseases. Tobacco smoking is a modifiable risk factor for the development of drug-induced diseases, since smoking can affect the pharmacokinetic and pharmacodynamic parameters of drugs. While smoking, a person inhales tobacco smoke - a complex mixture of components of variable composition, consisting of gaseous, solid and liquid substances, including nicotine, polycyclic aromatic hydrocarbons, carbon monoxide, etc. All these chemicals can interact with other drugs, like clozapine, duloxetine, fluvoxamine, haloperidol, imipramine, olanzapine, onadnsetron, paracetamol, propranolol, theophylline, warfarin, clopidogrel, etc. Components of tobacco smoke can also change the safety profile of drugs at the pharmacodynamic level through agonistic and antagonistic interactions with other drugs and, thereby, increase the risk of adverse drug reactions. For example, tobacco smoking is associated with hyperalgesia due to desensitization of N-cholinergic receptors, which can reduce the effectiveness of analgesics, including opioids, and require the administration of large doses of morphine, meperidine or propoxyphene. Nicotine also enhances the secretion of catecholamines into the bloodstream, activating the sympathetic nervous system, increasing resistance, blood pressure and heart rate, which can reduce the effectiveness of antihypertensive and hypoglycemic therapy and require the appointment of higher doses, and increasing the risk of complications. Therefore, when a patient who does not consider it necessary to stop smoking, in order to reduce the risks of medicinal complications, there is a need to choose drugs, that have a minimal risk of intraction with components of tobacco smoke and do not increase the risk of developing drug-induced diseases and mortality.

Full Text

Restricted Access

About the authors

D. A Sychev

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

Olga D. Ostroumova

I.M. Sechenov First Moscow State Medical University; Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University; Professor of the Department of Therapy and Polymorbid Pathology, Russian Medical Academy of Continuous Professional Education Moscow, Russia

A. P Pereverzev

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

A. I Kochetkov

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

T. M Ostroumova

I.M. Sechenov First Moscow State Medical University

Moscow, Russia

M. V Klepikova

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

E. Yu Ebzeeva

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

References

  1. Kantor E., Rehm C., Haas J.S., et al. Trends in prescription drug use among adults in the United States from 1999-2012. JAMA. 2015;314(17):1818-31. Doi: 10.1001/ jama.2015.13766.
  2. Сычев Д.А., Остроумова О.Д., Кочетков А.И. и др. Лекарственно-индуцированные заболевания: эпидемиология и актуальность проблемы. Фарматека. 2020;27(5):77-84. doi: 10.18565/pharmateca.2020.5.77-84.
  3. Hales C.M., Servais J., Martin C.B., et al. Prescription Drug Use Among Adults Aged 40-79 in the United States and Canada. NCHS Data Brief. 2019;(347):1-8.
  4. Tisdale J.E., Miller D.A. Drug Induced Diseases: Prevention, Detection, and Management. 3rd Ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018. 1399 р.
  5. Официальный сайт Всемирной Организации Здравоохранения [WHO official cite]. Available at: https://www.euro.who.int/ru/health-topics/ disease-prevention/tobacco/data-and-statistics. Accessed 15 Jan 2021].
  6. Немченко И, Звездина П., Губернаторов Е. В России увеличилось число курящих женщин
  7. Официальный сайт Всемирной Организации Здравоохранения: статистические данные по курению Available at: https://www.euro. who.int/ru/health-topics/disease-prevention/ tobacco/data-and-statistics. Accessed 15 Jan 2021
  8. Зайцева Т.А. Полициклические ароматические углеводороды табачного дыма.. Available at: http://www. vniitti.ru/conf/conf2017/article/Zayceva T.A._ statya.pdf. Accessed 15 Jan 2021.
  9. Татарченко И.И., Мохначев И.Г, Касьянов Г.И. Химия субтропических и пищевкусовых продуктов: Учеб. пособие для студ. высш. учеб. заведений. М., 2003. 256 с.
  10. Tobacco: Production, Chemistry, and Technology. D. Layten Davis (Ed.), Mark T. Nielsen (Ed.). Wiley-Blackwell. 1999. 480 р.
  11. Zevin S., Benowitz N.L. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999;36(6):425-38. doi: 10.2165/00003088199936060-00004.
  12. Тарловская Е.И., Козиолова Н.А., Чесникова А.И. Влияние образа жизни на эффективность и безопасность лекарственных препаратов в кардиологической практике: что должен учитывать врач? Российский кардиологический журнал 2016;1(129):51-9. doi: 10.15829/1560-4071-2016-151-59.
  13. Фармакология: учебник. Под ред. Р.Н. Аляутдина. 5-е изд., перераб. и доп. М., 2015. 1104 с
  14. Kozlowski L.T., Mehta N..Y., Sweeney C.T., et al. Filter ventilation and nicotine content of tobacco in cigarettes from Canada, the United Kingdom, and the United States. Tob Control. 1998;7(4):369-75. doi: 10.1136/tc.7.4.369.
  15. Lucas C., Martin J. Smoking and drug interactions. Aust Prescr. 2013;36:102-4. Available at: https://www.nps.org.au/assets/1411.pdf.
  16. Leemann T., Bonnabry P., Dayer P. Selective inhibition of major drug metabolizing cytochrome P450 isozymes in human liver microsomes by carbon monoxide. Life Sci. 1994;54:951-doi: 10.1016/0024-3205(94) 00496-x.
  17. Trela B.A., Carlson G.P., Mayer P.R. Effect of carbon monoxide on the cytochrome P-450-mediated metabolism of aniline and p-nitroanisol in the isolated perfused rabbit lung. J Toxicol Environ Health. 1989;27:331-40. doi: 10.1080/1528 73989095313 04.
  18. Montgomery M.R., Rubin R.J. The effect of carbon monoxide inhalation on in vivo drug metabolism in the rat. J Pharmacol Exp Ther. 1971;179:465- 73.
  19. Alexidis A.N., Rekka E.A., Kourounakis P.N. Influence of mercury and cadmium intoxication on hepatic microsomal CYP2E and CYP3A subfamilies. Res Commun Mol Pathol Pharmacol. 1994;85:67-72.
  20. Клар Э. Полициклические углеводороды. Пер. с англ. В.В. Ершова. М., 1971. Т. 1-2.
  21. Kroon L.A. Drug interactions with smoking. Am J Health Syst Pharm. 2007;64(18):1917-21. doi: 10.2146/ajhp060414.
  22. Takano M., Naka R., Sasaki Y., et al. Effect of cigarette smoke extract on P-glycoprotein function in primary cultured and newly developed alveolar epithelial cells. Drug Metab Pharmacokinet. 2016;31(6):417-24. doi: 10.1016/j.dmpk.2016.08.006.
  23. Molden E., Spigset O. Tobakksroyking og interaksjoner med legemidler [Tobacco smoking and drug interactions]. Tidsskr Nor Laegeforen. 2009;129(7):632-33. Norwegian. doi: 10.4045/tidsskr.08.0122.
  24. Леонова М.В. Влияние курения на эффективность кардиоваскулярныхпрепаратов. Consilium medicum. 2013;15(1 ):50-5.
  25. Xia J., Wang L., Ma Z., et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol Dial Transplant. 2017;32(3):475-87. Doi: g/10.1093/ndt/gfw452.
  26. Maideen N.M.P. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine. World J Pharmacol. 2019;8(2):14-25. doi: 10.5497/wjp.v8.i2.14.
  27. Jain R.B., Ducatman A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged >20 years. J Circ Biomark. 2018;7:1849454418779310. doi: 10.1177/1849454418779310.
  28. Лемина Е.Ю., Чурюканов В.В. Лекарственные средства и курение табака: проблемы взаимодействия. Экспериментальная и клиническая фармакология. 2018;81(1):40-3.
  29. Лукина Ю.В. Лекарственные препараты и курение. Рациональная фармакотерапия в кардиологии. 2005;1(1):31-6
  30. Heishman S.J., Kleykamp B.A., Singleton E.G. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacol (Berl). 2010;210:453-46. doi: 10.1007/s00213-010-1848-1.
  31. Pomerleau O.F. Nicotine and the central nervous system: biobehavioral effects of cigarette smoking. Am J Med. 1992;93(1A):2S-7. doi: 10.1016/0002-9343(92)90619-m.
  32. Naina Mohamed Pakkir Maideen. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine. World J Pharmacol. 2019;8(2):14-25. doi: 10.5497/wjp.v8.i2.14.
  33. Qiu Y.M., Liu Y.T., Li S.T. Tramadol requirements may need to be increased for the perioperative management of pain in smokers. Med Hypotheses. 2011;77:1071-73. Doi: 10.1016/j. mehy.2011.09.005.
  34. Sweeney B.P., Grayling M. Smoking and anaesthesia: the pharmacological implications. Anaesthesia. 2009;64(2):179-86. doi: 10.1111/j.1365-2044.2008.05686.x.
  35. Miller L.G. Recent developments in the study of the effects of cigarette smoking on clinical pharmacokinetics and clinical pharmacodynamics. Clin Pharmacokinet. 1989;17:90-108. doi: 10.2165/00003088-198917020-00003.
  36. Yoon J.H., Lane S.D., Weaver M.F. Opioid Analgesics and Nicotine: More Than Blowing Smoke. J Pain Palliat Care Pharmacother 2015;29:281-89. doi: 10.3109/15360288.2015.1063559.
  37. Hosseinzadeh A., Thompson P.R., Segal B.H., et al. Nicotine induces neutrophil extracellular traps. J Leukoc Biol. 2016;100:1 105-12. Doi: 10.1189/ jlb.3ab0815-379rr.
  38. Invernizzi G., Ruprecht A., De Marco C., et al. Inhaled steroid/tobacco smoke particle interactions: a new light on steroid resistance. Respir Res. 2009;10:48. doi: 10.1186/14659921-10-48.
  39. Polosa R., Thomson N.C. Smoking and asthma: dangerous liaisons. Eur Respir J. 2013;41:716-doi: 10.1183/09031936.00073312.
  40. Thomson N.C., Spears M. The influence of smoking on the treatment response in patients with asthma. Curr Opin Allergy Clin Immunol. 2005;5:57-63. doi: 10.1097/00130832200502000-00011.
  41. Burkman R., Schlesselman J.J., Zieman M. Safety concerns and health benefits associated with oral contraception. Am J Obstet Gynecol. 2004;190(Suppl. 4):S5-22. Doi: 10.1016/j. ajog.2004.01.061.
  42. Seibert C., Barbouche E., Fagan J., et al. Prescribing oral contraceptives for women older than 35 years of age. Ann Intern Med. 2003;138:54-64. doi: 10.7326/0003-4819-138-1-200301070 00013.
  43. Chasan-Taber L., Stampfer M.J. Epidemiology of oral contraceptives and cardio- vascular disease. Ann Intern Med. 1998;128:467-77. doi: 10.7326/0003-4819-128-6-199803150
  44. Schwingl P.J., Ory H.W., Visness C.M. Estimates of the risk of cardiovascular death attributable to low-dose oral contraceptives in the United States. Am J Obstet Gynecol. 1999;180(pt. 11):24149. doi: 10.1016/s0002-9378(99)70182-1
  45. Rosenberg L., Palmer J.R., Rao R.S., et al. Low-dose oral contraceptive use and the risk of myocardial infarction. Arch Intern Med. 2001;161:106570. doi: 10.1001/archinte.161.8.1065
  46. Schiff I., Bell W.R., Davis V., et al. Oral contraceptives and smoking, current considerations: recommendations of a consensus panel. Am J Obstet Gynecol. 1999;180(6, pt. 2):S383-84. doi: 10.1016/s0002-9378(99)70700-3.
  47. Cipolle R.J., Seifert R.D., Neilan B.A., et al. Heparin kinetics: variables related to disposition and dosage. Clin Pharmacol Ther. 1981;29:387-93. doi: 10.1038/clpt.1981.53.
  48. Heinemann L.A., Assmann A., DoMinh T., et al. Oral progestogen-only contracep- tives and cardiovascular risk: results from the Transnational Study on Oral Contraceptives and the Health of Young Women. Eur J Contracept Reprod Health Care. 1999;4:67-73. doi: 10.3109/13625189909064007.
  49. Hatcher R.A, Schnare S. Ask the experts: progestin-only contraceptives. Contracept Technol Update. 1993;14:114-15.
  50. Guidelines «Treating Tobacco Use and Dependence: 2008 Update». Available at: https:// www.ncbi.nlm.nih.gov/books/NBK63952/. Accessed 15 Jan 2021.
  51. Global Strategy for the Diagnosis, Management and Prevention of COPD [2019 Report]. Available at: https://goldcopd.org/. Accessed 15 Jan 2021.
  52. ACC Expert Consensus Decision Pathway on Tobacco Cessation Treatment. Available at: http://www.onlinejacc.org/content/ early/2018/11/29/j.jacc.2018.10.027?fbclid=1 wAR3pFJFBxAnG4DCCMV5QqyMjkAG-3SVrDsZ moEdEogcB1M9FZ9gS5dPhbCs. Accessed 15 Jan 2021
  53. Инструкция по медицинскому применению лекарственного препарата для медицинского применения Чампикс® РН ЛСР-006439/08. Available at: https://grls.rosminzdrav.ru (дата обращения: 15.01.2021)
  54. Vadasz 2009. Vadasz 1. The first Hungarian experiences with varenicline to support smoking cessation. MedicinaThoracalis LX11.1. February 2009: 1-9
  55. «PubMed» library. Available at: https://pubmed. ncbi.nlm.nih.gov. Accessed 15 Jan 2021.
  56. Tonstad S., Lawrence D. Varenicline in smokers with diabetes: A pooled analysis of 15 randomized, placebo-controlled studies of varenicline. J Diabetes Investig. 2017;8(1):93-100. doi: 10.1111/jdi.12543.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies