The structure of the mRNA molecule in vaccines for the prevention of SARS-COV-2 infection -not so simple


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The SARS-CoV-2 pandemic has highlighted a clear need to find ways to prevent this infection, primarily through the creation of effective and safe vaccines; so, efforts in this direction have been made by a number of pharmaceutical and biotechnology companies with varying degrees of success. If classical vaccines did not raise questions about the mechanism of action and the expected safety profile, then information about the development and appearance of mRNA-containing vaccines on the market was truly an event, since these were not only the first drugs based on mRNA, but in general, the first registered vaccines against SARS CoV-2. For obvious reasons, this has raised a fair amount of questions in the medical and scientific community about how the vaccine works, whether it is effective and how safe it is. The first two mRNA-containing vaccines were products from Pfizer/BioNTech and Moderna, for which we currently have a large amount of clinical information. However, the objective of this article is to describe the structural and functional characteristics of the key component of the vaccine - the mRNA molecule itself, using the example of the Pfizer/BioNTech vaccine. Of course, the information is purely scientific in nature, but it is quite possible that it carries some answers to questions that a practitioner may have about this type of vaccine.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Aleksandr Veselov

Institute of Antimicrobial Chemotherapy; Smolensk State Medical University

Email: alex.veselov@antibiotic.ru
Cand. Sci. (Med.), Deputy Director Smolensk, Russia

Әдебиет тізімі

  1. Messenger RNA (mRNA). Available at: www. genome.gov/genetics-glossary/messenger-rna. Accessed: 16.01.2021.
  2. Conry R.M., Lobuglio A.F., Wright M., et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995;55:1397-400.
  3. Karikó K., Buckstein M., Ni H., et al. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165-75. doi: 10.1016/j.immuni.2005.06.008.
  4. Reichmuth A.M., Oberli M.A., Jaklenec A., et al. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319-34. doi: 10.4155/tde-2016-0006.
  5. Guevara M., Persano F., Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem. 2020;8:589959. doi: 10.3389/fchem.2020.589959.
  6. Xue H.Y, Guo P., Wen W.-C., et al. Lipid-based nanocarriers for RNA delivery. Curr Pharm Des. 2015;21(22):3140-47. doi: 10.2174/1381612 821666150531164540.
  7. Wang M.Y, Zhao R., Gao L.J., et al. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10:587269. Doi: 10.3389/ fcimb.2020.587269.
  8. Pardi N., Hogan M., Porter F., Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-78. Doi: 10.1038/ nrd.2017.243.
  9. FDA Briefing Document. Pfizer-BioNTech COVID-19 Vaccine. Available at: www.fda.gov/ media/144245/download. Accessed: 15.01.2021.
  10. FDA Briefing Document. Moderna COVID-19 Vaccine. Available at: www.fda.gov/ media/144434/download. Accessed: 15.01.2021.
  11. Pfizer and BioNTech conclude phase 3 study of COVID-19 vaccine candidate, meeting all primary efficacy endpoints. Available at: www.pfizer.com/ news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-COVID-19-vaccine. Accessed: 13.01.2021.
  12. Soleimanpour S., Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines 2021;1-22. doi: 10.1080/14760584.2021.1875824.
  13. Rele S. COVID-19 vaccine development during pandemic: gap analysis, opportunities, and impact on future emerging infectious disease development strategies. Hum Vaccin Immunother. 2021;17(4):1122-27. doi: 10.1080/21645515.2020.1822136.
  14. Corum J., Zimmer C. How the Pfizer-BioNTech Vaccine Works. Available at: www.nytimes.com/ interactive/2020/health/pfizer-biontech-COVID-19-vaccine.html. Accessed: 14.01.2021.
  15. мРНК. URL: https://ru.wikipedia.org/wiki/%D0%9 C%D0%B0%D 1%82%D1%80%D0%B8%D1 %87 %D0%BD%D0%B0%D1%8F_%D0%A0%D0%9D %D0%9A. Ссылка активна на 17.01.2021.
  16. Comirnaty. COVID-19 mRNA vaccine (nucleoside-modified). Available at: www.ema.europa.eu/en/ medicines/human/EPAR/comirnaty. Accessed: 17.01.2021.
  17. Pfizer-BioNTech COVID-19 Vaccine. Available at: www.cdc.gov/vaccines/COVID-19/info-by-product/ pfizer. Accessed: 17.01.2021.
  18. WHO. Available at: https://berthub.eu/ articles/11889.doc. Accessed 17.01.2021.
  19. Reverse Engineering the source code of the Pfizer/ BioNTechSARS-CoV-2 Vaccine. Available at: https:// berthub.eu/articles/posts/reverse-engineering-source-code-of-the-biontech-pfizer-vaccine/. Accessed: 14.01.2021.
  20. Available at: https://biontech.de/COVID-19. Accessed 17.01.2021.
  21. Polack F.P., Thomas S.J., Kitchin N., et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383:2603-15. Doi: 10.1056/ NEJMoa2034577.
  22. Pfizer-BioNTech announce positive topline results of pivotal COVID-19 vaccine study in adolescents.Available at: www.pfizer.com/news/press-release/ press-release-detail/pfizer-biontech-announce-positive-topline-results-pivotal. Accessed March 31, 2021.
  23. Pfizer and BioNTech confirm high efficacy and no serious safety concerns through up to six months following second dose in updated topline analysis of landmark COVID-19 vaccine study. Available at: www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-confirm-high-efficacy-and-no-serious. Accessed 01.04.2021.
  24. Coronavirus Vaccine Tracker. Available at: www. nytimes.com/interactive/2020/science/ coronavirus-vaccine-tracker.html#pfizer. Accessed 01.04.2021.
  25. Nucleoside-modified messenger RNA. Available at: https://en.wikipedia.org/wiki/Nucleoside-modified_messenger_RNA. Accessed 16.01.2021.
  26. Pardi N., Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Meth Mol Biol. 2017;1499:109-21. doi: 10.1007/978-1-4939-6481-9_6.
  27. Karikó K., Muramatsu H., Welsh F.A., et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther JAm. Soc Gene Ther. 2008;16:1833-40. doi: 10.1038/mt.2008.200.
  28. Pardi N., Hogan M.J., Naradikian M.S., et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215(6):1571-88. doi: 10.1084/jem.20171450.
  29. Hou W. Characterization of codon usage pattern in SARS-CoV-2. Virol J. 2020;17(1):138. doi: 10.1186/s12985-020-01395-x.
  30. Lewis J., Izaurralde E. The role of the cap structure in RNA processing and nuclear export. Eur J Biochem. 1997;247(2):461-69. doi: 10.1111/j.1432-1033.1997.00461.x.
  31. Five-prime cap. Available at: https://en.wikipedia. org/wiki/Five-prime_cap#Function. Accessed 14.01.2021.
  32. Sahin U., Kariko K., Türeci Ö. mRNA-based therapeutics - developing a new class of drugs. Nat Rev Drug Discov 2014;13:759-80. Doi: 10.1038/ nrd4278.
  33. Weissman E. mRNA transcript therapy. Expert Rev Vaccin. 2014;14:265-81. doi: 10.1586/14760584.2015.973859.
  34. Gray N.K., Wickens M. Control of translation initiation in animals. Ann Rev Cell Dev Biol. 1998;14:399-458. doi: 10.1146/annurev. cellbio.14.1.399.
  35. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987;196:947-50. doi: 10.1016/0022-2836(87)90418-9.
  36. Pelletier J., Sonenberg N. Insertion mutagenesis to increase secondary structure within the 50 noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell. 1985;40:515-26. doi: 10.1016/0092-8674(85)90200-4.
  37. Asrani K.H., Farelli J.D., Stahley M.R., et al. Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol. 2018;15(6):756-62. doi: 10.1080/15476286.2018.1450054.
  38. Babendure J.R., Babendure J.L., Ding J.-H., Tsien, R.Y Control of mammalian translation by mRNA structure near caps. RNA. 2006;12:851-61. doi: 10.1261/rna.2309906.
  39. Gustafsson C., Govindarajan S., Minshull J. Codon bias and heterologous protein expression. Trend Biotechnol. 2004;22:346-53. Doi: 10.1016/j. tibtech.2004.04.006.
  40. Linares-Fernández S., Lacroix C., Exposito J.-Y, et al. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trend Mol Med. 2020;26:311-doi: 10.1016/j.molmed.2019.10.002.
  41. S.K. Samal. Leader Sequence. In: Brenner's Encyclopedia of Genetics (Second Edition). 2013.
  42. Kudla G., Lipinski L., Caffin F., et al. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6):e180. doi: 10.1371/journal.pbio.0040180.
  43. Pallesen J., Wang N., Corbett K.S., et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA. 2017;114(35):E7348-57. doi: 10.1073/pnas.1707304114.
  44. Hsieh C.-L., Goldsmith J., Schaub J., et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. bioRxiv. 2020;2020.05.30.125484. doi: 10.1101/2020.05.30.125484.
  45. Corbett K.S., Edwards D.K., Leist S.R., et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567-71. Doi: 10.1038/ s41586-020-2622-0. 46.3' Untranslated Region (3' UTR). Available at: www.changbioscience.com/res/res/ r3ssUntranslatedsRegi.htm. Accessed 16.01.2021.
  46. Mayr C. What are 3' UTRs doing? Cold Spring Harb Perspect Biol. 2019;11(10):a034728. doi: 10.1101/cshperspect.a0347281.
  47. Murray E.L., Schoenberg D.R. A+U-Rich instability elements differentially activate 5'-3' and 3'-5' mRNA decay. Mol Cell Biol. 2007;27:2791-99. doi: 10.1128/MCB.01445-06.
  48. Von Niessen A.G.O., Poleganov M.A., Rechner C., et al. Improving mRNA-Based therapeutic gene delivery by expression-augmenting 3' UTRs identified by cellular library screening. Mol Ther. 2019;27:824-doi: 10.1016/j.ymthe.2018.12.011.
  49. Barreau C., Paillard L., Beverley Osborne H. AU-rich elements and associated factors: are there unifying principles? Nucleic Acid Res. 2005;33:7138-50. doi: 10.1093/nar/gki1012.
  50. Holtkamp S., Kreiter S., Selmi A., et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108:4009-17. doi: 10.1182/blood-2006-04-015024.
  51. Grier A., Burleigh S., Sahni J., et al. pEVL: a linear plasmid for generating mRNA IVT templates with extended encoded poly(A) sequences. Mol Ther Nucleic Acids. 2016;5(4):e306. Doi: 10.1038/ mtna.2016.21.
  52. Park J.-E., Yi H., Kim Y., et al. Regulation of poly(A) tail and translation during the somatic cell cycle. Mol Cell. 2016;62:462-71. Doi: 10.1016/j. molcel.2016.04.007.
  53. Dreyfus M., Régnier P The poly(A) tail of mRNAs. Bodyguard in eukaryotes, scavenger in bacteria. Cell. 2002;111(5):611-13. doi: 10.1016/S0092-8674(02)01137-6.
  54. Brenner S., Jacob F., Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961;190:576-81. doi: 10.1038/190576a0.
  55. Wolff J.A., Malone R.W., Williams P., et al. Direct gene transfer into mouse muscle in vivo. Sci. 1990;247:1465-68. Doi: 10.1126/ science.1690918.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2021

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>