Patients with bronchial asthma who have undergone COVID-19


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Coronavirus infection 2019 (COVID-19) is common worldwide. The significance of bronchial asthma (BA) for the course of COVID-19 is ambiguous. Objective. Retrospectively analysis of the course of COVID-19 infection in BA patients. Methods. The case histories of 1167 patients diagnosed with COVID-19, among them 82 (7.02%) patients suffered from BA, were analyzed. Results. Among BA patients who underwent COVID-19 infection, there were 11 (13.4%) men and 71 (86.6%) women. Among BA patients, diabetes mellitus was found in 5 (6.09%), arterial hypertension - in 70 (85.4%), coronary artery disease - in 8 (9.75%) patients. 5 BA patients died. There were 7 smoking BA patients. Conclusion. The analysis showed that the prevalence of BA was 7.02% of the total number of COVID-19 infections. Low mortality was revealed in BA patients infected with COVID-19.

Full Text

Restricted Access

About the authors

Elena Yu. Trushina

Penza Institute for Advanced Medical Education - Branch Campus of the Russian Medical Academy of Continuous Professional Education

Email: trushina.lena@mail.ru
Cand. Sci. (Med.), Teaching Assistant at the Department of Pulmonology and Phthisiology Penza, Russia, Penza, Russia

E. M Kostina

Penza Institute for Advanced Medical Education - Branch Campus of the Russian Medical Academy of Continuous Professional Education

Penza, Russia, Penza, Russia

E. A Orlova

Penza Institute for Advanced Medical Education - Branch Campus of the Russian Medical Academy of Continuous Professional Education

Penza, Russia, Penza, Russia

References

  1. van Doremalen N., Bushmaker T., Morris D.H., et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-67. Doi: 10.1056/ NEJMc2004973.
  2. Richardson S., Hirsch J.S., Narasimhan M., et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-59. Doi: 10.1001/ jama.2020.6775.
  3. Arentz M., Yim E., Klaff L., et al. Characteristics and Outcomes of 21Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-14.
  4. Chhiba K.D., Patel G.B., Vu T.H., et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J Allergy Clin Immunol. 2020;146(2):307-14. doi: 10.1016/j.jaci.2020.06.010.
  5. Li X., Xu S., Yu M., et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110-18. doi: 10.1016/j.jaci.2020.04.006.
  6. Johnston S.L. Asthma and COVID-19: Is asthma a risk factor for severe outcomes? Allergy. 2020;75(7):1543-45. doi: 10.1111/all.14348.
  7. Guia para el manejo del asma GEMA5.0. Available at: http://www.gemasma.com. Access date: 22.03.2021.
  8. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., et al. COVID-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020:382(21):2012-22. Doi: 10.1056/ NEJMoa2004500.
  9. Garg S., et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR. Morb Mortal Wkly Rep. 2020;69(15):458-64. doi: 10.15585/mmwr. mm6915e3.
  10. Myers L.C., Parodi S.M., Escobar G.J., Liu V.X. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA. 2020;323(21):2195-98. doi: 10.1001/jama.2020.7202.
  11. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (2020) The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) -China, 2020. China CDC weekly. February 17 2020.
  12. Grasselli C., Zangrillo A., Zanella A., et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-81. Doi: 10.1001/ jama.2020.5394.
  13. Guan W.J., Liang W.H., Zhao Y., et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. doi: 10.1183/13993003.00547-2020.
  14. Zhang J.J., Dong X., Cao Y.Y., et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-41. doi.org/10.1111/ all.14238
  15. Dembic Z. Chapter 6 - cytokines of the immune system: interleukins. In: Dembic Z. (ed). The cytokines of the immunesystem. Amsterdam, Academic Press, 2015. Р 143-239. doi: 10.1016/B978-0-12-419998-9.00006-7.
  16. de Velde A.A., Huijbens R.J., Heije K., et al. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosisfactor alpha, and IL-6 by human monocytes. Blood. 1990;76(7): 1392-97.
  17. Levings M.K., Schrader J.W. IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and - independent mechanisms. J Immunol. 1999;162(9):5224-29.
  18. de Vries J.E. The role of IL-13 and its receptor in allergy andinflammatory responses. J Allergy Clin Immunol. 1998;102(2):165-69. Doi: 10.1016/ s0091-6749(98)70080-6.
  19. Pilette C., Ouadrhiri Y, Van Snick J., et al. IL-9 inhibits oxidative burst and TNF-alpha release in lipopolysaccharide-stimulated human monocytesthrough TGF-beta. J Immunol. 2002;168(8):4103-1 1. Doi: 10.4049/ jimmunol.168.8.4103.
  20. Временные методические рекомендации по профилактике,диагностике и лечению новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). (Электронный ресурс).
  21. Jackson D.J., Busse W.W., Bacharier L.B., et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203-6. doi: 10.1016/j.jaci.2020.04.009.
  22. Halpin D.M., Singh D., Hadfield R.M. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J. 2020;55(5):2001009. doi: 10.1183/13993003.01009-2020.
  23. Dong X., Cao Y.Y., Lu X.X., et al. Eleven faces of coronavirus disease 2019. Allergy. 2020;75(7): 1699-709. Doi: 10.1111/ all.14289.
  24. Arden K.E., Chang A.B., Lambert S.B., et al. Newly identified respiratory viruses in children with asthma exacerbation not requiring admission to hospital. J Med Virol. 2010;82:1458-61. doi: 10.1002/jmv.21819.
  25. Johnston S.L., Pattemore P.K., Sanderson G., et al. The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am J Respir Crit Care Med. 1996;154:654-60. Doi: 10.1164/ ajrccm.154.3.8810601.
  26. Khetsuriani N., Kazerouni N.N., Erdman D.D., et al. Prevalence of viral respiratory tract infections in children with asthma. J Allergy Clin Immunol. 2007;119:314-21. Doi: 10.1016/j. jaci.2006.08.041.
  27. Rosenberg H.F., Dyer K.D., Domachowske J.B. Respiratory viruses and eosinophils: exploring the connections. Antivir Res. 2009;83(1):1-9. doi: 10.1016/j.antiviral.2009.04.005.
  28. Rosenberg H.F., Dyer K.D., Domachowske J.B. Eosinophil sand their interactions with respiratory virus pathogens. Immunol Res. 2009;43(1-3):128-37. doi: 10.1007/s12026-008-8058-5.
  29. Du Y., Tu L., Zhu P., et al. Clinical features of 85 fatal casesof COVID-19 from Wuhan: a retrospective observational study. Am J Respir Crit Care Med. 2020;201:1372-9. Doi: 10.1164/ rccm.202003-0543OC.
  30. Hassani M., Leijte G., Bruse N., et al. Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. J Leukoc Biol. 2020;108(5):1665-doi: 10.1002/JLB.1AB1219-493R.
  31. Butterfield J.H. Treatment of hypereosinophilic syndromes with prednisone, hydroxyurea, and interferon. Immunol Allergy Clin North Am. 2007;27:493-518. Doi: 10.1016/j. iac.2007.06.003

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies