Markers of eosinophilic and neutrophilic inflammation of respiratory tract in patients with non-allergic bronchial asthma and chronic obstructive pulmonary disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are heterogeneous diseases with different underlying pathogenetic mechanisms due to different types of respiratory tract inflammation, and therefore, different responses to therapy. The evaluation of the types of respiratory tract inflammation, the isolation of markers of eosinophilic and neutrophilic inflammation will provide a differentiated approach to the diagnosis and treatment of these pathologies. Objective. Determination of the markers of types of respiratory tract inflammation in patients with non-allergic bronchial asthma (NABA) and COPD. Methods. 99 patients were examined. They were divided into 2 groups: group 1 (n=49) - patients with NABA, group 2 (n=50) - patients with COPD. The cellular composition of induced sputum (IS) and blood, blood eosinophilic cationic protein (ECP), and neutrophil elas-tase (NE) levels were determined. Parameters are presented as median (Me) and quartiles (Q25; Q75%). Multivariate analysis to identify significant factors and ROC analysis were used. The results were considered statistically significant at p value <0.05. Results. A significantly high neutrophil level in IS was determined in patients with NABA (73%) and COPD (78%) in comparison with healthy individuals (p<0.05). A high eosinophil level in IS (more than 3%) was detected only in 12 (24.48%) patients with NABA and in 5 (10%) patients with COPD. A significantly increased blood neutrophil level, both in percentage and in absolute count, was revealed in patients with NABA (67% and 5.30*109/L, respectively) and with COPD (72% and 7.30*10>/L, respectively) compared with the control group (p<0.05). A high blood eosinophil level the (more than 3%) was observed in 10 (20.40%) patients with NABA and in 8 (16%) patients with COPD. High ECP values were found in 14 (28.57%) patients with NABA and in 6 (12%) patients with COPD. A high level of NE was found in 34 (69.38%) patients with NABA and in 41 (82%) patients with COPD. Significantly high NE level was observed in patients with NABA (150 ng/ml) and COPD (175 ng/ml) compared with the control group (80 ng/ml) (p<0.05). Threshold value for ECP was 19.92 ng/ml and higher, for eosinophils in IS - 3.50% and higher, for NE - 135 ng/ml and higher, for the absolute neutrophil count - 5.38x109/L and higher. Conclusion. Markers of eosinophilic inflammation in patients with NABA and COPD were ECP and eosinophils in IS, markers of neutrophilic inflammation in patients with NABA and COPD - NE and the absolute neutrophil count.

Full Text

Restricted Access

About the authors

Elena Yu. Trushina

Penza Institute for Advanced Medical Education - Branch Campus of the Russian Medical Academy of Continuous Professional Education

Email: trushina.lena@mail.ru
Cand. Sci. (Med.), Teaching Assistant at the Department of Pulmonology and Phthisiology Penza, Russia

E. M Kostina

Penza Institute for Advanced Medical Education - Branch Campus of the Russian Medical Academy of Continuous Professional Education

Penza, Russia

References

  1. Ненашева Н.М. Т2-бронхиальная астма: характеристика эндотипа и биомаркеры. Пульмонология. 2019;29(2):216-28
  2. Agusti A. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res. 2010;11:122. doi: 10.1186/1465-9921-11-122.
  3. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention (GINA).National Institutes of Health; National Heart, Lung, and Blood Institute. Updated. 2019. [Electronic resource]. Available at: https://ginasthma.org.
  4. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention (GOLD). National Institutes of Health; National Heart, Lung, and Blood Institute. Updated. 2019. [Electronic resource]. Available at: http://www.goldcopd.org.
  5. Lin T.Y. Asthma phenotypes and endotypes. Curr Opin Pulm Med. 2013;19(1):18-23. doi: 10.1097/MCP0b013e32835b10ec
  6. Wensel S. Severe asthma in adults. Am J Respir Crit Care Med. 2005;172(2):149-60. Doi: 10.1164/ rccm.200409-1181PP
  7. Soler-Cataluna J.J. The concept of control of COPD in clinical practice International J COPD. 2014;9:1397-405. doi: 10.2147/COPD. S71370.
  8. Miravitlles M. Treatment of COPD by clinical phenotypes: putting old evidence into clinical practice. Eur Respir J. 2013;41(6):1252-56. doi: 10.1183/09031936.00118912.
  9. Chung K.F. Precision medicine in asthma: linking phenotypes to targeted treatments. Curr Opin Pulm Med. 2018;24(1):4-10. Doi: 10.1097/ MCP0000000000000434.
  10. Borish L. The immunology of asthma: Asthma phenotypes and their implications for personalized treatment. Ann. Allergy. Asthma Immunol. 2016;117(2):108-14. Doi: 10.1016/j. anai.2016.04.022.
  11. Ильина Н.И. и др. Алгоритм биофенотипирования и выбор таргетной терапии тяжелой неконтролируемой бронхиальной астмы с эозинофильным типом воспаления дыхательных путей. Росcийский аллергологический журнал. 2017;3:5-18
  12. Lоtvall J. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355-60. Doi: 10.1016/j. jaci.2010.11.037.
  13. Wenzel S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18:716-25. Doi: 10.1152/ Physrev.00023.2019.
  14. Schleich F. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723-32. doi: 10.1016/j.rmed.2014.10.007.
  15. Simpson J.L. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirol. 2006;11:54-61. doi: 10.1111/j.1440-1843.2006.00784.x.
  16. Федосеев Г.Б. и др. Характеристика мокроты для оценки наличия и характера воспаления бронхолегочного аппарата у больных бронхиальной астмой и хронической обструктивной болезнью легких. Росcйский аллергологический журнал. 2015;1:15-26.
  17. Haldar P. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008; 1 78(3);218-24. Doi: 10.1164 / rccm.200711-1754OC.
  18. Green R.H. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax. 2002;57(10):875-79. doi: 10.1136/thorax.57.10.875.
  19. Ray A. Neutrophilic inflammation in asthma and association with disease severity. Trend Immunol. 2017;38(12):942-54. Doi: 10.1016/j. it.2017.07.003.
  20. Чучалин А.Г. Респираторная медицина: руководство. М., 2017. Т. 1. 640 с.
  21. Miravitlles М. A proposal for the withdrawal of inhaled corticosteroids in the clinical practice of chronic obstructive pulmonary disease. Respir Res. 2017;18(1):198. doi: 10.1186/s12931-017-0682-у.
  22. McDonald V.M. Multidimensional assessment and tailored interventions for COPD: respiratory utopia or common sense? Thorax. 2013;68(7):691-94. doi: 10.1136/thoraxjnl-2012-202646.
  23. Barnes N.C. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur Respir J. 2016;47(5):1374-82. doi: 10.1183/13993003.01370-2015.
  24. Cheng S.L. Effectiveness using higher inhaled corticosteroid dosage in patients with COPD by different blood eosinophilic counts. Int J Chron Obstruct Pulmon Dis. 2016;11(1):2341-48. doi: 10.2147/COPD.S115132.
  25. O'Donnell D.E. Effect of fluticasone propionate/ salmeterol on lung hyperinflation and exercise endurance in COPD. Chest. 2006;130(3):647-doi: 10.1378/chest.130.3.647.
  26. Pascoe S. Blood eosinophil counts, exacerbations and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomized controlled trials. Lancet. Respir Med. 2015;3:435-doi: 10.1016/S2213-2600(15)00106-X.
  27. Crim C. Pneumonia risk with inhaled fluticasone furoate and vilanterol compared with vilanterol alone in patients with COPD. Ann Am Thorac Soc. 2015;12(1):27-34. Doi: 10.1513/ AnnalsATS.201409-413OC.
  28. Ernst P. Inhaled corticosteroids in COPD: the clinical evidence. Eur Respir J. 2015;45(2):525-37. doi: 10.1183/13993003.01009-2020.
  29. Nieto A. Adverse effects of inhaled corticosteroids in funded and nonfunded studies. Arch. Intern. Med. 2007;167(19):2047-53. Doi: 10.1001/ archinte.167.19.2047.
  30. Popov T.A. Some technical factors influencing the induction of sputum for cell analysis. Eur Respir J. 1995;8:559-65
  31. Трушина Е.Ю. Клинико-иммунологическая диагностика типов воспаления дыхательных путей в оптимизации терапии у больных бронхиальной астмой и хронической обструктивной болезнью легких. Дисс. канд. мед. наук. Пенза, 2020
  32. Костина Е.М., Трушина Е.Ю., Молотилов Б.А. и др. Модель типа воспаления дыхательных путей с учетом основных маркеров у больных хронической обструктивной болезнью легких. Аллергология и иммунология. 2018;19(4):181 -86

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies