Role and location of increased epithelial permeability syndrome in the devel-opment of cardiovascular and bronchopulum diseases: theoretical and practical aspects of application of rebamipide


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The syndrome of increased epithelial permeability (SIEP) of the mucous membrane of the gastrointestinal tract is one of the most studied pathogenetic syndromes in the 21st century. In February 2021, the first multidisciplinary Consensus was published on this topical issue, which comprehensively analyzed the pathophysiological, clinical and pharmacotherapeutic aspects of this syndrome as one of the basic mechanisms of the development of human pathology. To date, of the drugs proven to act on intestinal permeability, only rebamipide is available. In the framework of the presented review, the possible role of SIEP permeability in the development of respiratory diseases and diseases of the cardiovascular system has been demonstrated, which suggests the formation of new therapeutic strategies that reduce damage to tight junctions (TJ) during inflammation and/or support the restoration of TJ, which will improve clinical prognosis for diseases of the respiratory and cardiovascular systems. At the same time, the use of rebamipide not only protects the mucous membranes from the damaging effects of various agents, but also promotes the restoration of epithelial cells and the healing of the resulting damage, and this effect can be claimed and useful for protecting the mucous membranes of the respiratory tract and gastrointestinal tract from the penetration of the virus into the pandemic of COVID-19. In cardiological practice, the issues of drug safety are directly related to SIEP when taking antiplatelet and anticoagulants agents.

Full Text

Restricted Access

About the authors

Dmitry I. Trukhan

Omsk State Medical University

Email: dmitry_trukhan@mail.ru
Cand. Sci. (Med.), Associate Professor, Professor of the Department of Polyclinic Therapy and Internal Diseases Omsk, Russia

D. S Ivanova

Omsk State Medical University

Omsk, Russia

References

  1. Arrieta M.C., Bistritz L., Meddings J.B. Alterations in intestinal permeability. Gut. 2006;55(10):1512-doi: 10.1136/gut.2005.085373.
  2. Turner J.R. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;11:799-809. doi: 10.1038/nri2653.
  3. Odenwald M.A., Turner J.R. Intestinal permeability defects: Is it time to treat? Clin Gastroenterol Hepatol. 2013;11(9):1075-83. Doi: 10.1016/j. cgh.2013.07.001.
  4. Graziani C., Talocco C., De Sire R., et al. Intestinal Permeability in Physiological and Pathological Conditions: Major Determinants and Assessment Modalities. Eur Rev Med Pharmacol Sci. 2019;23(2):795-810. Doi: 10.26355/ eurrev 201901 1689.
  5. Sturgeon C., Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4:e1251384. doi: 10.1080/21688370.2016.1251384.
  6. Симаненков В.И., Маев И.В., Ткачева О.Н. и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021;20(1):2758
  7. Chang J., Leong R.W., Wasinger V.C., et al. Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing. Gastroenterology. 2017;153:723-31. doi: 10.1053/j.gastro.2017.05.056.
  8. Eutamene H., Beaufrand C., Harkat C., Theodorou V. The role of mucoprotectants in the management of gastrointestinal disorders. Expert Rev Gastroenterol Hepatol. 2018;12(1):83-90. doi: 10.1080/17474124.2018.1378573.
  9. Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis. 2016;1(3):135-45. doi: 10.1159/000447252.
  10. Arakawa T., Higuchi K., Fujiwara Y., et ai. 15th anniversary of rebamipide: looking ahead to the new mechanisms and new applications. Dig Dis Sci. 2005;50(1):S3-S11. Doi: 10.1007/ s10620-005-2800-9.
  11. Matysiak-Budnik T.,Heyman M.,Megraud F. Review articie: rebamipide and the digestive epitheiiai barrier. Aliment Pharmacol Ther. 2003;18(1):55-doi: 10.1046/j.1365-2036.18.s1.6.x.
  12. Fujiwara Y., Higuchi K., Tominaga K., et ai. Quality of uicer healing and rebamipide. 2005;63(11):397-400.
  13. Naito Y., Yoshikawa T. Rebamipide: a gastrointestinai protective drug with pieiotropic activities. Expert Rev Gastroenterol Hepatoi. 2010;4(3):261-70. doi: 10.1586/egh.10.25.
  14. Zhang S., Qing Q., Bai Y., et ai. Rebamipide helps defend against nonsteroidai anti-infiammatory drugs induced gastroenteropathy: a systematic review and meta-anaiysis. Dig Dis Sci. 2013;58(7): 1991-2000. Doi: 10.1007/ s10620-013-2606-0.
  15. Звяглова М.Ю., Князев О.В., Парфенов А.И. Ребамипид: перспективы применения в гастроэнтерологии и не только. Терапевтический архив. 2020;92(2):104-11.
  16. Suetsugu H., ishihara S., Moriyama N., et ai. Effect of rebamipide on prostagiandin EP4 receptor gene expression in rat gastric mucosa. J Lab Ciin Med. 2000;136(1):50-7. Doi: 10.1067/ mic.2000.107303.
  17. Fujioka T., Arakawa T., Shimoyama T., et ai. Effects of rebamipide, a gastro-protective drug on the Heiicobacter pyiori status and infiammation in the gastric mucosa of patients with gastric uicer: a randomized doubie-biind piacebo-controiied muiticentre triai. Aiiment Pharmacoi Ther. 2003;18(1):146-52. doi: 10.1046/j.1365- 2036.18.s1.20.x.
  18. Kieine A., Kiuge S., Peskar B.M. Stimuiation of prostagiandin biosynthesis mediates gastroprotective effect of rebamipide in rats. Dig Dis Sci. 1993;38(8):1441-49. Doi: 10.1007/ bf01308601.
  19. Sun W.H., Tsuji S., Tsujii M., et ai. induction of cyciooxygenase-2 in rat gastric mucosa by rebamipide, a mucoprotective agent. J Pharmacoi Exp Ther. 2000;295(2):447-52.
  20. Yoshida N., Yoshikawa T., Linuma S., et ai. Rebamipide protects against activation of neutrophiis by Heiicobacter pyiori. Dig Dis Sci. 1996;41(6):1139-44. Doi: 10.1007/ bf02088229.
  21. Arakawa T., Kobayashi K., Yoshikawa T. Rebamipide: overview of its mechanisms of action and efficacy in mucosai protection and uicer heaiing. Dig Dis Sci. 1998;43(9):5-13.
  22. Du Y., Li Z., Zhan X., et ai. Anti-infiammatory effects of rebamipide according to Heiicobacter pyiori status in patients with chronic erosive gastritis: a randomized sucraifate-controiied muiticenter triai in China-STARS study Dig Dis Sci. 2008;53(11):2886-95. doi: 10.1007/s10620- 007-0180-z.
  23. Masamune A., Yoshida M., Sakai Y., Shimosegawa T. Rebamipide inhibits ceramide-induced interieukin-8 production in Kato iii human gastric cancer ceiis. J Pharmacoi Exp Ther. 2001;298(2):485-92.
  24. Sugimoto M., Uotani T., Furuta T. Does rebamipide prevent gastric mucosai injury in patients taking aspirin and ciopidogrei? Dig Dis Sci. 2014;59(8):1671-3. doi: 10.1007/s10620-014-3145-z.
  25. Suzuki T., Yoshida N., Nakabe N., et ai. Prophyiactic effect of rebamipide on aspirin-induced gastric iesions and disruption of tight junctionai protein zonuia occiudens-1 distribution. J Pharmacoi Sci. 2008;106(3):469-77. doi: 10.1254/jphs. FP0071422.
  26. Mizukami K., Murakami K., Abe T., et ai. Aspirin-induced smaii bowei injuries and the preventive effect of rebamipide. Worid J Gastroenteroi. 2011;17(46):5117-22. doi: 10.3748/wjg.v17. i46.5117.
  27. Nishizawa T., Suzuki H., Nakagawa I., et ai. Rebamipide-promoted restoration of gastric mucosai sonic hedgehog expression after eariy Heiicobacter pyiori eradication. Digestion. 2009;79(4):259-62. doi: 10.1159/000213241.
  28. Tarnawski A.S., Jones M.K. The role of epidermai growth factor (EGF) and its receptor in mucosai protection, adaptation to injury, and uicer heaiing: invoivement of EGF-R signai transduction pathways. J Ciin Gastroenteroi. 1998;27(1):S12-doi: 10.1097/00004836-199800001 00004.
  29. Tarnawski A.S., Chai J., Pai R., Chiou S.K. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimuiates angiogenesis: a key to its uicer heaiing action? Dig Dis Sci. 2004;49(2):202-9. doi: 10.1023/b:dda s.0000017439.60943.5c.
  30. Udagawa A., Shiota G., ichiba M., Murawaki Y. Effect of rebamipide on acetic acid-induced gastric uicer in rats: invoivement of hepatocyte growth factor. Scand J Gastroenteroi. 2003;38(2):141-doi: 10.1080/00365520310000609.
  31. Watanabe S., Wang X.E., Hirose M., et ai. Effects of rebamipide on biie acid-induced inhibition of gastric epitheiiai repair in a rabbit ceii cuiture modei. Aiiment Pharmacoi Ther. 1996;10(6):927-32. doi: 10.1046/j.1365-2036.1996.105276000.x.
  32. Hahm K.B., Park I.S., Kim Y.S., et ai. Roie of rebamipide on induction of heat-shock proteins and protection against reactive oxygen metaboiite-mediated ceii damage in cuitured gastric mucosai ceiis. Free Radic Bioi Med. 1997;22(4):711-6. doi: 10.1016/s0891-5849(96)00406-6.
  33. Masanobu T., Tomoya T., Asano R., et ai. Rebamipide suppresses 5-fiuorouracii-induced ceii death via the activation of Akt/mTOR pathway and reguiates the expression of Bci-2 famiiy proteins. Toxicoiogy in Vitro. 2018;46:284-93. doi: 10.1016/j.tiv.2017.10.019.
  34. Rao J.N., Guo X., Liu L., et ai. Poiyamines reguiate Rho-kinase and myosin phosphoryiation during intestinai epitheiiai restitution. Am J Physioi Ceii Physioi. 2003;284:848-59. Doi:1 0.1152/ ajpceii.00371.2002.
  35. Takagi T., Naito Y., Uchiyama K., et ai. Rebamipide promotes heaiing of coionic uiceration through enhanced epitheiiai restitution. Worid J Gastroenteroi. 2011;17(33):3802-809. doi: 10.3748/wjg.v17.i33.3802.
  36. Suzuki H., Mori M., Kai A., et ai. Effect of rebamipide on H. pyiori-associated gastric mucosai injury in Mongoiian gerbiis. Dig Dis Sci. 1998;43(9):181S-7S.
  37. Hayashi S., Sugiyama T., Amano K., et ai. Effect of rebamipide, a novei antiuicer agent, on Heiicobacter pyiori adhesion to gastric epitheiiai ceiis. Antimicrob Agents Chemother. 1998;42(8):1895-99.
  38. Zhang S., Qing Q., Bai Y., et ai. Rebamipide heips defend against nonsteroidai anti-infiammatory drugs induced gastroenteropathy: a systematic review and meta-anaiysis. Dig Dis Sci. 2013;58(7):1991-2000. Doi: 10.1007/ s10620-013-2606-0.
  39. Симаненков В.И., Лутаенко Е.А., Никогосян А.А. Клинико-фармакологические особенности применения ребамипида при заболеваниях желудочно-кишечного тракта литературный обзор. Медицинский совет. 2016;19:88-95.
  40. Tai F., McAiindon M. NSAIDs and the smaii bowei. Curr Opin Gastroenteroi. 2018;34(3):175-82. doi: 10.1097/MOG.0000000000000427.
  41. Каратеев А.Е., Мороз Е.В., Крюков Е.В. Поражение тонкой кишки, ассоциированное с приемом нестероидных противовоспалительных препаратов. Альманах клинической медицины. 2019;6:559-67.
  42. Miyata M., Kasugai K., Ishikawa T., et al. Rebamipide enemas-new effective treatment for patients with corticosteroid dependent or resistant ulcerative colitis. Dig Dis Sci. 2005;50(1):S119-doi: 10.1007/s10620-005-2816-1.
  43. Michielan A., D'Incà R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm. 2015;628157. doi: 10.1155/2015/628157.
  44. Pardi D.S. Diagnosis and Management of Microscopic Colitis. Am J Gastroenterol. 2017;112(1):78-85. Doi: 10.1038/ ajg.2016.477.
  45. Takahashi S., Okami K., Fujii T., Tanaka K. Efficacy and safety of rebamipide liquid for chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: a multicenter, randomized, double-blind, placebo-controlled, parallel-group phase II study. BMC Cancer. 2017;17(1):314. doi: 10.1186/s12885-017-3295-4.
  46. Akagi S., Fujiwara T., Nishida M., et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis J Pharm Health Care Sci. 2019;5:16. doi: 10.1186/s40780-019-0146-2.
  47. Gweon T.G., Park J.H., Kim B.W. Additive Effects of Rebamipide Plus Proton Pump Inhibitors on the Expression of Tight Junction Proteins in a Rat Model of Gastro-Esophageal Reflux Disease. Incheon and Western Kyonggi Gastrointestinal Study.Gut Liver. 2018;12(1):46-50. doi: 10.5009/gnl17078.
  48. Jaafar M.H., Safi S.Z., Tan M.P., et al. Efficacy of Rebamipide in Organic and Functional Dyspepsia: A Systematic Review and Meta-Analysis. Dig Dis Sci. 2018;63(5):1250-60. Doi: 10.1007/ s10620-017-4871-9.
  49. Haruma K., Ito M., Kido S., et al. Long-term rebamipide therapy improves Helicobacter pylori-associated chronic gastritis. Dig Dis Sci. 2002;47(4):862-67.
  50. Kamada T., Sato M., Tokutomi T., et al. Rebamipide improves chronic inflammation in the lesser curvature of the corpus after Helicobacter pylori eradication: a multicenter study. Biomed Res Int. 2015;2015:865146.
  51. Андреев Д.Н., Дичева Д.Т., Маев И.В. Возможности оптимизации эрадикационной терапии инфекции Helicobacter pylori в современной клинической практике. Терапевтический архив. 2017;89(2):84- 90.
  52. Kato T., Araki H., Onogi F., et al. Clinical trial: rebamipide promotes gastric ulcer healing by proton pump inhibitor after endoscopic submucosal dissection - a randomized controlled study. Gastroenterol. 2010;45(3):285-90. doi: 10.1007/s00535-009-0157-0.
  53. Коробейникова Е.Р., Шкатова Е.Ю. Применение ребамипида в комплексной терапии эрозивных поражений гастродуоденальной зоны лиц молодого возраста. Медицинский альманах. 2018;1(52):26-30.
  54. Дичева Д.Т., Андреев Д.Н., Парцваниа-Виноградова Е.В., Маев И.В. Оценка эффективности и безопасности применения ребамипида в схеме тройной эрадикационной терапии инфекции Helicobacter pylori. Медицинский совет. 2018;3:86-9
  55. Андреев Д.Н., Маев И.В., Дичева Д.Т. и др. Эффективность и безопасность применения ребамипида в схеме тройной эрадикационной терапии инфекции Helicobacter pylori: проспективное рандомизированное сравнительное исследование. Терапевтический архив. 2018;8:27-32
  56. Парфенов А.И., Белостоцкий Н.И., Дбар С.Р. и др. Энтеропатия с нарушением мембран ного пищеварения. Эффективная фармакотерапия. 2018;16;20-7
  57. Сагынбаева В.Э., Лазебник Л.Б. Ребамипид - современный гастроцитопротектор при эрозивно-язвенных поражениях верхних отделов желудочно-кишечного тракта: результаты исследования. Терапия. 2019;8(34):173-83
  58. Чорбинская С.А., Кудрявцева Н.А., Степанова И.И. и др. НПВП индуцированное поражение желудочно-кишечного тракта. Новые возможности гастро- и энтеропротекции. Кремлевская медицина. Клинический вестник. 2019;4:98104
  59. Мещерякова Г.М., Копылова Д.В., Ватутина В.С. Опыт применения ребамипида в лечении постлучевого колита. Колопроктология. 2019;S3(69):87
  60. Трухан Д.И., Чусова Н.А. Синдром повышенной эпителиальной проницаемости кишечника в реальной клинической практике. Терапия. 2020;8:174-185
  61. Викторова И.А., Трухан Д.И., Иванова Д.С. Современные возможности лечения и профилактики НПВП индуцированных энтеропатий. Медицинский совет. 2020;(5):30-40
  62. Majewski S., Piotrowski W. Pulmonary manifestations of inflammatory bowel disease. Arch Med Sci. 2015;11(6):1179-88. doi: 10.5114/aoms.2015.56343.
  63. Vutcovici M., Brassard P., Bitton A. Inflammatory bowel disease and airway diseases. World J Gastroenterol. 2016;22(34):7735-41. doi: 10.3748/wjg.v22.i34.7735.
  64. D'Arienzo A., Manguso F., Astarita C., et al. Allergy and mucosal eosinophil infiltrate in ulcerative colitis. Scand J Gastroenterol. 2000;35(6):624-doi: 10.1080/003655200750023598.
  65. D'Arienzo A.,Manguso R.,Scarpa R.,et al. Ulcerative colitis, seronegative spondyloarthropathies and allergic diseases: the search for a link. Scand J Gastroenterol 2002;37(10):1156-63. doi: 10.1080/003655202760373362.
  66. Myrelid P., Dufmats M., Lilja I., et al. Atopic manifestations are more common in patients with Crohn disease than in the general population. Scand J Gastroenterol. 2004;39:731-36. doi: 10.1080/00365520410005955.
  67. Tzanakis N.E., Tsiligianni I.G., Siafakas N.M. Pulmonary involvement and allergic disorders in inflammatory bowel disease. World J Gastroenterol. 2010;16(3):299-305. doi: 10.3748/wjg.v16.i3.299.
  68. Ekbom A., Brandt L., Granath F., et. al. Increased risk of both ulcerative colitis and Crohn's disease in a population suffering from COPD. Lung/ 2008;186(3):167-72. doi: 10.1007/s00408- 008-9080-z.
  69. Duricova D., Pedersen N., Elkjaer F., et al. Overall and cause-specific mortality in Crohn's disease: a meta-analysis of population-based studies. Inflamm Bowel Dis. 2010;16:347-53. doi: 10.1002/ibd.21007.
  70. Betancourt S.L., Palacio D., Jimenez C.A., et al. Thoracic manifestations of inflammatory bowel disease. AJR Am J Roentgenol. 2011;197(3):W452-56. Doi: 10.2214/ AJR.10.5353.
  71. Ji X.Q., Wang L.X., Lu D.G. Pulmonary manifestations of inflammatory bowel disease. World J Gastroenterol. 2014;20(37):13501-11. doi: 10.3748/wjg.v20.i37.13501.
  72. Moeser A., Lerche M., Wirtz H., Stallmach A. Aspects of pulmonary involvement in inflammatory bowel disease. Internist (Berl). 2018;59(9):876-85. doi: 10.1007/s00108- 018-0473-7.
  73. Danve A. Thoracic Manifestations of Ankylosing Spondylitis, Inflammatory Bowel Disease, and Relapsing Polychondritis. Clin Chest Med. 2019;40(3):599-608. Doi: 10.1016/j. ccm.2019.05.006.
  74. Massart A., Hunt D.P. Pulmonary Manifestations of Inflammatory Bowel Disease. Am J Med. 2020;133(1):39-43. Doi: 10.1016/j. amjmed.2019.07.007.
  75. Black H., Mendoza M., Murin S. Thoracic manifestations of infl ammatory bowel disease. Chest. 2007;131(2):524-32. Doi: 10.1378/ chest.06-1074.
  76. Fedorova T.A., Spirina. L., Chernekhovskaia N.E., et al. The stomach and duodenum condition in patients with chronic obstructive lung diseases. Klin Med (Mosk). 2003;81(10):31-3.
  77. Белобородова Э.И., Акимова Л.А., Бурковская В.А. и др. Активность системной воспалительной реакции у больных хронической обструктивной болезнью легких во взаимосвязи с абсорбционной функцией тонкой кишки. Терапевтический архив. 2009;81(3):19-23.
  78. Sugita K., Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol. 2020;107(5):749-62. Doi: 10.1002/ JLB.5MR0120-230R.
  79. Subramanian S., Geng H., Tan X.D. Cell death of intestinal epithelial cells in intestinal diseases. Sheng LiXue Bao. 2020;72(3):308-24.
  80. Rezaee F., Georas S.N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol. 2014;50(5):857-69. Doi: 10.1165/ rcmb.2013-0541RT.
  81. Aghapour M., Raee P., Moghaddam S.J., et. al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol. 2018;58(2):157-69. Doi: 10.1165/ rcmb.2017-0200TR.
  82. Gon Y., Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018;67(1):12-7. Doi: 10.1016/j. alit.2017.08.011.
  83. Peebles R.S. Jr., Aronica M.A. Proinflammatory Pathways in the Pathogenesis of Asthma. Clin Chest Med. 2019;40(1):29-50. Doi: 10.1016/j. ccm.2018.10.014.
  84. Zuo L., Kuo W.T., Turner J.R. Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol. 2020;10(2):327-40. Doi: 10.1016/j. jcmgh.2020.04.001.
  85. Keely S., Talley N.J., Hansbro P.M. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012;5:7-18. doi: 10.1038/mi.2011.55.
  86. Ware L.B., Matthay M.A. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-49. Doi: 10.1056/ NEJM200005043421806.
  87. Wittekindt O.H. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017;469(1):135-47. doi: 10.1007/s00424-016-1917-3.
  88. Schlingmann B., Molina S.A., Koval M. Claudins: gatekeepers of lung epithelial function. Semin Cell Dev Biol. 2015;42:47-57. Doi: 10.1016/j. semcdb.2015.04.009.
  89. Stevenson B.R., Anderson J.M., Goodenough D.A., Mooseker M.S. Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. Cell Biol. 1988;107(6 Pt 1):2401-408. doi: 10.1083/jcb.107.6.2401.
  90. Koval M. Tight junctions, but not too tight: fine control of lung permeability by claudins. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L217-doi: 10.1152/ajplung.00196.2009.
  91. Kage H., Flodby P., Gao D., et al. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury Am J Physiol Lung Cell Mol Physiol. 2014;307(7):L524-36. doi: 10.1152/ajplung.00077.2014.
  92. LaFemina M.J., Sutherland K.M., Bentley T., et al. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol. 2014;51(4):550-58. doi: 10.1165/rcmb.2013-0456OC.
  93. Li G., Flodby P., Luo J., et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol. 2014;51(2):210-22. Doi: 10.1165/ rcmb.2013-0353OC.
  94. Coyne C.B., Gambling T.M., Boucher R.C., et. al. Role of claudin interactions in airway tight junctional permeability Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L1166-78. Doi: 10.1152/ ajplung.00182.2003/
  95. Kaarteenaho-Wiik R,, Soini Y. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem. 2009;57(3):187-95. Doi: 10.1369/ jhc.2008.951566.
  96. Kaarteenaho R., Merikallio H., Lehtonen S., et. al. Divergent expression of claudin -1, -3, -4, -5 and - 7 in developing human lung. Respir Res. 2010;11(1):59. doi: 10.1186/1465-9921-11 59.
  97. Kielgast F., Schmidt H., Braubach P., et al. Glucocorticoidsregulatetightjunction permeability of lung epithelia by modulating claudin 8. Am J Respir Cell Mol Biol. 2016;54(5):707-17. doi: 10.1165/rcmb.2015-0071OC.
  98. Weibel E.R. On the tricks alveolar epithelial cells play to make a good lung. Am J Respir Crit Care Med. 2015;191 (5):504-13. Doi: 10.1164/ rccm.201409-1663OE.
  99. Wang F., Daugherty B., Keise L.L., et al. Heterogeneity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol. 2003;29(1):62-70. doi: 10.1165/rcmb.2002-0180OC.
  100. Lafemina M.J., Rokkam D., Chandrasena A., et al. Keratinocyte growth factor enhances barrier function without altering claudin expression in primary alveolar epithelial cells. AJP Lung Cell Mol Physiol. 2010;299(6):L724-34. Doi: 10.1152/ ajplung.00233.2010.
  101. Frank J.A. Claudins and alveolar epithelial barrier function in the lung. Ann N Y Acad Sci. 2012;1257:175-83. doi: 10.1111/j.1749-6632.2012.06533.x.
  102. Heijink I.H., Noordhoek J.A., Timens W., et al. Abnormalities in airway epithelial junction formation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189:1439-42. Doi: 10.1164/ rccm.201311-1982LE.
  103. Nishida K., Brune K.A., Putcha N., et al. Cigarette smoke disrupts monolayer integrity by altering epithelial cell-cell adhesion and cortical tension. Am J Physiol Lung Cell Mol Physiol. 2017;313(3):L581-L591. Doi: 10.1152/ ajplung.00074.2017.
  104. Aghapour M., Raee P, Moghaddam S.J., et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol. 2018;58:157-69. doi: 10.1164/rccm.201311-1982LE.
  105. Xiao C., Puddicombe S.M., Field S., et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):549-56.e1-12. doi: 10.1016/j.jaci.2011.05.038.
  106. Tatsuta M., Kan-OK., Ishii Y., et al. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respir Res. 2019;20(1):251. doi: 10.1186/s12931-019-1226-4.
  107. Гриневич В.Б., Губонина И.В., Дощицин В.Л. и др. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус 2020. Кардиоваскулярная терапия и профилактика. 2020;19(4):2630.
  108. Гриневич В.Б., Кравчук Ю.А., Ткаченко Е.И., и др. Особенности ведения больных с гастроэнтерологической патологией в условиях пандемии COVID-19. Экспериментальная и клиническая гастроэнтерология. 2020;176(4):3-18
  109. Ткачева О.Н., Котовская Ю.В., Алексанян Л.А., и др. Согласованная позиция экспертов Российской ассоциации геронтологов и гериатров. Новая коронавирусная инфекция SARS-CoV-2 (COVID19) у пациентов пожилого и стар -ческого возраста: особенности профилактики, диагностики и лечения. Кардиоваскулярная терапия и профилактика. 2020;19(3):2601
  110. Wen X., Chen X., Zhou X. Rebamipide inhibited expression of TLR4 and TNF-alpha release in pulmonary epithelial cell line A549 induced by lipopolysaccharide. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009;34(5):457-60.
  111. Yasuda T., Chiba H., Satomi T., et al. Preventive effect of rebamipide gargle on chemoradiotherpy-induced oral mucositis in patients with oral cancer: a pilot study. J Oral Maxillofac Res. 2012;2(4):e3. doi: 10.5037/jomr.2011.2403.
  112. Akagi S., Fujiwara T., Nishida M., et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. Doi:10.1186/ s40780-019-0146-2.
  113. Urita Y., Watanabe T., Maeda T., et al. Rebamipide and mosapride enhance pilocarpine-induced salivation. N Am J Med Sci. 2009;1(3):121-24.
  114. Sumida K., Molnar M.Z., Potukuchi P.K., et al. Constipation and risk of death and cardiovascular events. Atherosclerosis. 2019;281:114-20. doi: 10.1016/j.atherosclerosis.2018.12.021.
  115. Khalif I.L., Quigley E.M., Konovitch E.A., Maximova I.D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation Dig Liver Dis. 2005;37(11):838-49. Doi: 10.1016/j. dld.2005.06.008.
  116. Rungoe C., Basit S., Ranthe M.F., et al. Risk of ischaemic heart disease in patients with inflammatory bowel disease: a nationwide Danish cohort study Gut. 2013;62(5):689-94. doi: 10.1136/gutjnl-2012-303285.
  117. Honkura K., Tomata Y., Sugiyama K., et al. Defecation frequency and cardiovascular disease mortality in Japan: The Ohsaki cohort study. Atherosclerosis. 2016;246:251-56. doi: 10.1016/j.atherosclerosis.2016.01.007.
  118. Nevulis M.G., Baker C., Lebovics E., Frishman W.H. Overview of Link Between Inflammatory Bowel Disease and Cardiovascular Disease. Cardiol Rev. 2018;26(6):287-93. Doi: 10.1097/ CRD.0000000000000214.
  119. Kirchgesner J. Cardiovascular risk in inflammatory bowel disease. Presse Med. 2019;48(12):1365-67. doi: 10.1016/j.lpm.2019.11.005.
  120. Cainzos-Achirica M, Glassner K., Zawahir H.S., et al. Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol. 2020;76(24):2895-905. doi: 10.1016/j.jacc.2020.10.027.
  121. Остроумова О.Д., Кочетков А.И., Павлеева Е.Е. и др. Взаимосвязь сердечно-сосудистых заболеваний с повышением проницаемости кишечной стенки: результаты научных и контролируемых клинических исследований. Фокус на возможности ребамипида. Фарматека. 2021;28(3):39-49
  122. Воробьева Н.М., Ткачева О.Н. Повышенная проницаемость кишечной стенки и ее роль в возникновении сердечнососудистых заболеваний. Фарматека. 2020;27(3):122-28
  123. Augustin H.G., Kozian D.H., Johnson R.C. Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. BioEssays. 1994;16(12):901-6. doi: 10.1002/bies.950161208.
  124. Cines D.B., Pollak E.S., Buck C.A., et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10): 3527-61.
  125. Kim S., Goel R., Kumar A., et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure Clin Sci (Lond). 2018;132(6):701-18. doi: 10.1042/CS20180087.
  126. Heianza Y., Ma W., Manson J.E., et. al. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies J Am Heart Assoc. 2017;6(7):e004947. Doi: 10.1161/ JAHA.116.004947.
  127. Jin M., Qian Z., Yin J., et. al. The role of intestinal microbiota in cardiovascular disease J Cell Mol Med. 2019;23(4):2343-50. Doi: 10.1111/ jcmm.14195.
  128. Rogler G., Rosano G. The heart and the gut Eur Heart J. 2014;35(7):426-30. Doi: 10.1093/ eurheartj/eht271.
  129. Sandek A., Bjarnason I., Volk H.D., et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012;157(1):80-5. Doi: 10.1016/j. ijcard.2010.12.016.
  130. Watanabe T., Takeuchi T., Handa O., et al. A multicenter, randomized, double-blind, placebo-controlled trial of high-dose rebamipide treatment for low-dose aspirininduced moderate-to-severe small intestinal damage. PLoS One. 2015;10(4):e0122330. doi: 10.1371/journal. pone.0122330.
  131. Kurokawa S., Katsuki S., Fujita T., et al. A randomized, double-blinded, placebo-controlled, multicenter trial, healing effect of rebamipide in patients with low-dose aspirin and/or nonsteroidal anti-inflammatory drug induced small bowel injury. J Gastroenterol. 2014;49(2):239-doi: 10.1007/s00535-013-0805-2.
  132. Pittayanon R., Piyachaturawat P., Rerknimitr R., et al. Cytoprotective agent for peptic ulcer prevention in patients taking dual antiplatelet agents: A randomized, double-blind placebo-controlled trial. J Gastroenterol Hepatol. 2019;34(9):1517-22. doi: 10.1111/jgh.14671.
  133. Koretsune Y., Yamashita T., Yasaka M., et al. Comparative effectiveness and safety of warfarin and dabigatran in patients with non-valvular atrial fibrillation in Japan: A claims database analysis. J Cardiol. 2019;73(3):204-9. Doi: 10.1016/j. jjcc.2018.09.004.
  134. Оганов Р.Г., Симаненков В.И., Бакулин И.Г. и др. Коморбидная патология в клинической практике. Алгоритмы диагностики и лечения. Кардиоваскулярная терапия и профилактика. 2019;18(1):5-66.
  135. Genta R.M. Review article: the role of rebamipide in the management of inflammatory disease of the gastrointestinal tract. Aliment Pharmacol Ther. 2003;18(1):8-13. doi: 10.1046/j.13652036.18.s1.5.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media