The place and role of a therapist and general practitioner in the management of comorbid patients during the pandemic of the new coronavirus infection (COVID-19): an emphasis on nonspecific prevention


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The National Consensus 2020 «Features of management of comorbid patients during the pandemic of the new coronavirus infection (COVID-19)» notes that the problem of managing comorbid patients in a pandemic requires an integrated approach aimed at optimal management of comorbid conditions both in patients who are in self-isolation with forced restrictions on visits to medical institutions, and in patients with COVID-19. The global clinical experience in the management of comorbid patients with a new coronavirus infection gained over the past year makes it possible to highlight a number of other pressing problems. This review addresses the issues of specific and non-specific prevention of COVID-19 using vitamin and mineral complexes, probiotics and rebamipide.

Full Text

Restricted Access

About the authors

Dmitry I. Trukhan

Omsk State Medical University

Email: dmitry_trukhan@mail.ru
Dr. Sci. (Med.), Associate Professor, Professor at the Department of Outpatient Therapy and Internal Diseases Omsk, Russia

E. L Davydov

Krasnoyarsk State Medical University n.a. Prof. V.F. Voino-Yasenetsky

Krasnoyarsk, Russia

References

  1. Гриневич В.Б., Губонина И.В., Дощицин В.Л. и др. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус, 2020. Кардиоваскулярная терапия и профилактика. 2020;19(4):2630
  2. Сологуб Т.В.,Осиновец О.Ю. Иммуномодуляторы в комплексной терапии ОРВИ: возможности применения препарата галавит. Русский медицинский журнал. Медицинское обозрение. 2013;3(21):144-146
  3. Трухан Д.И., Филимонов С.Н. Дифференциальный диагноз основных пульмонологических симптомов и синдромов. ППб.: СпецЛит, 2019. 176 с
  4. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)», версия 10 (08.02.2021), Министерства здравоохранения Российской Федерации. URL: https://static-.minzdrav.gov.ru/system/attachments/attaches/000/054/662/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D 0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_ COVID-19_%28v.10%29.pdf
  5. Tay M.Z., Poh C.M., Renia L., et al. The trinity of COVID-19: immunitY., inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-doi: 10.1038/s41577-020-0311-8.
  6. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-45.e9. Doi: 10.1016/j. cell.2020.04.026.
  7. Свистунов А.А., Махнач Г.К., Бунина Д.В. и др. Применение иммуномодулирующего препарата аминодигидрофталазиндиона натрия для предотвращения прогрессирования пневмонии при COVID-19. Терапевтический архив. 2020;92(11):65-70.
  8. Трухан Д.И., Тарасова Л.В. Особенности клиники и лечения острых респираторных вирусных инфекций в практике врача-терапевта. Врач. 2014;8:4-7
  9. Лыткина И.Н., Малышев Н.А. Профилактика и лечение гриппа и острых респираторных вирусных инфекций среди эпидемиологически значимых групп населения. Клиническая инфектология и паразитология. 2015;2(13):11724
  10. Временные методические рекомендации «Порядок проведения вакцинации взрослого населения против COVID-19».URL: https://minzdrav.gov.ru/news/2021/07/02/16927-utverzhdeny-vremennye-metodicheskie-rekomendatsii-poryadok-provedeniya-vaktsinatsii-vzroslogo-naseleniya-protiv-covid-19
  11. Ершов Ф.И., Наровлянский А.Н., Мезенцева М.В. Ранние цитокиновые реакции при вирусных инфекциях. Цитокины и воспаление. 2004;1:1-6
  12. Трухан Д.И. Комплексная терапия воспалительных заболеваний дыхательных путей на этапе оказания первичной медико-санитарной помощи. Болезни органов дыхания. Приложение к журналу Consilium Medicum. 2015;1:40-50
  13. Трухан Д.И., Мазуров А.Л., Речапова Л.А. Острые респираторные вирусные инфекции: актуальные вопросы диагностики, профилактики и лечения в практике терапевта. Терапевтический архив. 2016;11:76-82
  14. Трухан Д.И., Багишева Н.В., Мордык А.В., Небесная Е.Ю. Аминодигидрофталазиндион натрия в профилактике, лечении и реабилитации пациентов с заболеваниями органов дыхания. Consilium Medicum. 2021;2(3):296-303
  15. Pecora F., Persico F., Argentiero A., et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. doi: 10.3390/nu12103198.
  16. Jayawardena R., Sooriyaarachchi P., Chourdakis M., et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 2020;14(4):367-82. doi: 10.1016/j.dsx.2020.04.015.
  17. Galmes S., Serra F., Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients. 2020;12(9):2738. doi: 10.3390/nu12092738.
  18. Camara M., Sanchez-Mata M.C., Fernandez-Ruiz V., et al. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods. 2021;10(5):1088. Doi: 10.3390/ foods10051088.
  19. Calder P.C. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74-92. doi: 10.1136/bmjnph-2020-000085.
  20. Shakoor H., Feehan J., Al Dhaheri A.S., et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1-9. doi: 10.1016/j.maturitas.2020.08.003.
  21. Kumar P., Kumar M., Bedi O., et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology. 2021 Jun 10:1-16. doi: 10.1007/s10787-021-00826-7.
  22. Subedi L., Tchen S., Gaire B.P., et al. Adjunctive Nutraceutical Therapies for COVID-19. Int J Mol Sci. 2021;22(4):1963. Doi: 10.3390/ ijms22041963.
  23. Junaid K., Ejaz H., Abdalla A.E., et al. Effective Immune Functions of Micronutrients against SARS-CoV-2. Nutrients. 2020;12(10):2992. doi: 10.3390/nu12102992.
  24. Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ J Basic Appl Sci. 2021;10(1):33. Doi: 10.1186/ s43088-021-00123-w.
  25. Alexander J., Tinkov A., Strand T.A., et al. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients. 2020;12(8):2358. doi: 10.3390/nu12082358.
  26. Iddir M., Brito A., Dingeo G., et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562. Doi: 10.3390/ nu12061562.
  27. Clemente-Suarez V.J., Ramos-Campo D.J., Mielgo-Ayuso J., et al. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients. 2021;13(6):1924. doi: 10.3390/nu13061924.
  28. Akhtar S., Das J.K., Ismail T., et al. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev. 2021;79(3):289-300. doi: 10.1093/nutrit/nuaa063.
  29. Di Renzo L., Gualtieri P., Pivari F., et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med. 2020;18(1):415. Doi: 10.1186/ s12967-020-02594-4.
  30. Mrityunjaya M., Pavithra V, Neelam R., et al. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol. 2020;1 1:570122. Doi: 10.3389/ fimmu.2020.570122.
  31. Vahid F., Rahmani D. Can an anti-inflammatory diet be effective in preventing or treating viral respiratory diseases? A systematic narrative review. Clin Nutr ESPEN. 2021;43:9-15. Doi: 10.1016/j. clnesp.2021.04.009.
  32. Jovic T.H., Ali S.R., Ibrahim N., et al. Could Vitamins Eielp in the Fight Against COVID-19? Nutrients. 2020;12(9):2550. doi: 10.3390/nu12092550.
  33. Dharmalingam K., Birdi A., Tomo S., et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem. 2021:1-11. doi: 10.1007/s12291-021-00961-6.
  34. de Faria Coelho-Ravagnani C., Corgosinho F.C., Sanches F.F.Z., et al. Dietary recommendations during the COVID-19 pandemic. Nutr Rev. 2021;79(4):382-93. doi: 10.1093/nutrit/ nuaa067
  35. Цинк, селен и витамин D. Как защищаться от COVID-19? Коронавирус COVID-19: Официальная информация о коронавирусе в России на портале - стопкоронавирус.рф. URL: https://xn--80aesfpebagmfblc0a.xn--p1ai/news/20201024-1315.html
  36. Раn S.Y., Zhou J., Gibbons L., et al. Canadian Саnсеr Registries Epidemiology Research Group. Antioxidants and breast cancer risk- a population-based case-control study in Canada. ВМС Cancer. 2011 ;11:372. Doi: 10.1 186/1471-240711-372.
  37. Cui Z., Liu D., Liu С., Liu G. Serum selenium levels and prostate cancer risk: A MOOSE-compliant meta-analysis.Medic'me (Baltimore). 2017;96(5):е5944. Doi: 10.1097/ MD.0000000000005944.
  38. Terry P.D., Qig B., Camacho F. et al., Supplemental Selenium May Decrease Ovarian Cancer Risk in African-American Women J Nutr. 2017;147(4):621-27. Doi: 10.3945/ jn.116.2432 79.
  39. Moghaddam A., Heller R.A., Sun Q., et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. doi: 10.3390/nu12072098.
  40. Bae M., Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules. 2020;25(22):5346. Doi: 10.3390/ molecules25225346.
  41. Bermano G., Mplan C., Mercer D.K., Hesketh J.E. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618-27. doi: 10.1017/S0007114520003128.
  42. Khatiwada S., Subedi A. A Mechanistic Link Between Selenium and Coronavirus Disease 2019 (COVID-19). Curr Nutr Rep. 2021;10(2):125-36. doi: 10.1007/s13668-021-00354-4
  43. Tomo S., Saikiran G., Banerjee M., Paul S. Selenium to selenoproteins - role in COVID-19. EXCLI J. 2021;20:781-91. doi: 10.17179/excli2021-3530.
  44. Lima L.W., Nardi S., Santoro V, Schiavon M. The Relevance of Plant-DerivedSeCompoundstoHuman Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel). 2021;10(7):1031. doi: 10.3390/antiox10071031.
  45. Im J.H., Je Y.S., Baek J., et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020 Nov;100:390-93. doi: 10.1016/j.ijid.2020.08.018.
  46. Younesian O., Khodabakhshi B., Abdolahi N., et al. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol Trace Elem Res. 2021 Jul 1:1-6. Doi: 10.1007/ s12011-021-02797-w.
  47. Zhang J., Saad R., Taylor E.W., Rayman M.P Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol. 2020;37:101715. Doi: 10.1016/j. redox.2020.101715.
  48. Kieliszek M., Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878.
  49. Samad N., Sodunke T.E., Abubakar A.R., et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic.J Inflamm Res. 2021;14:527-50. doi: 10.2147/JIR.S295377.
  50. Corrao S., Mallaci Bocchio R., Lo Monaco M., et al. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients. 2021;13(4):1261. Doi: 10.3390/ nu13041261.
  51. Patel O., Chinni V, El-Khoury J., et al. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol. 2021;93(5):3261-67.
  52. Skalny A.V, Rink L., Ajsuvakova O.P., et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med. 2020;46(1):17-26. doi: 10.3892/ijmm.2020.4575.
  53. Jothimani D., Kailasam E., Danielraj S., et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-49. doi: 10.1016/j.ijid.2020.09.014.
  54. Wessels I., Rolles B., Rink L. The Potential Impact of Zinc Supplementation on COVID-19. Pathogenesis. Front Immunol. 2020;11:1712. Doi: 10.3389/ fimmu.2020.01712.
  55. Heller R.A., Sun Q., Hackler J., et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;38:101764. Doi: 10.1016/j. redox.2020.101764.
  56. Rahman M.T., IdidS.Z. Can Zn Be a Critical Element in COVID-19 Treatment? Biol Trace Elem Res. 2021;199(2):550-58. doi: 10.1007/s12011- 020-02194-9.
  57. de Almeida Brasiel P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN. 2020;38:65-6. doi: 10.1016/j.clnesp.2020.06.003.
  58. Pal A., Squitti R., Picozza M., et al. Zinc and COVID-19: Basis of Current Clinical Trials. Biol Trace Elem Res. 2021;199(8):2882-92. Doi: 10.1007/ s12011-020-02437-9.
  59. Joachimiak M.P Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis. 2021;15(1):e0008895. Doi: 10.1371/ journal.pntd.0008895.
  60. Fiorino S., Gallo C., Zippi M., et.al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res. 2020;32(10):2115-31. doi: 10.1007/s40520-020-01669-y.
  61. Stephensen C.B., Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr. 2021 Jan 20:1-10. doi: 10.1017/ S0007114521000246.
  62. Li R., Wu K., Li Y., et al. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-Aging (Albany NY). 2020;12(15):15784-96. doi: 10.18632/aging.103888.
  63. Tepasse P.R., Vollenberg R., Fobker M., et al. A. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients. 2021;13(7):2173. Doi: 10.3390/ nu13072173.
  64. Abioye A.I., Bromage S., Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health. 2021;6(1):e003176. Doi: 10.1136/ bmjgh-2020-003176.
  65. Abobaker A, Alzwi A., Alraied A.H.A. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020;72(6):1517-doi: 10.1007/s43440-020-00176-1.
  66. Ebrahimzadeh-Attari V., Panahi G., Hebert J.R., et al. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect. 2021;11(2):119-36. doi: 10.34172/hpp.2021.17.
  67. Tavakol S., Seifalian A.M. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol Appl Biochem. 2021 May 2:10.1002/bab.2176. doi: 10.1002/bab.2176.
  68. Борисов В.В. Микроэлементы селен и цинк в организме женщины и мужчины: проблемы и решения. Consilium Medicum. 2018;20(7):63-8
  69. Борисов В.В. Российская демография, пути улучшения мужского и женского здоровья в аспекте фертильности. Мнение уролога и репродуктолога. Consilium Medicum. 2019;21(7):10-8
  70. Трухан Д.И., Викторова И.А. Нефрология. Эндокринология. Гематология. СПб: СпецЛит, 2017. 253 с
  71. Трухан Д.И., Викторова И.А., Сафонов А.Д. Болезни печени. СПб.: СпецЛит, 2019. 239 с
  72. Трухан Д.И., Викторова И.А. Болезни органов дыхания. СПб: СпецЛит, 2013. 176 с
  73. Wells J.M. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact. 2011, 10(Suppl 1): S17. doi: 10.1186/1475-2859-10-S1-S17.
  74. Трухан Д.И., Викторова И.А. Коррекция нарушений кишечного микробиоценоза в аспекте профилактики респираторных инфекций дыхательных путей: возможности Lactobacillus rhamnosus GG. Гастроэнтерология. Хирургия. Интенсивная терапия. Consilium Medicum. 2018;2:39-44.
  75. Острые респираторные вирусные инфекции в амбулаторной практике врача-педиатра. Пособие для врачей под ред. Н.А. Коровиной. М., 2004. 48 с
  76. Сурков А.Н. Возможности коррекции и профилактики нарушений микробиоценоза кишечника у часто болеющих детей. Вопросы современной педиатрии. 2013;2:59-65
  77. Трухан Д.И., Мазуров А.Л., Речапова Л.А. Острые респираторные вирусные инфекции: актуальные вопросы диагностики, профилактики и лечения в практике терапевта. Терапевтический архив. 2016;11:76-82
  78. Трухан Д.И., Голошубина В.В. Острые респираторные вирусные инфекции в практике врача первого контакта: актуальные аспекты клиники, лечения и профилактики. Справочник поликлинического врача. 2016;05:6-11
  79. Treating infectious diseases in a microbial world: Report of two workshops on novel antimicrobial therapeutics. Washington: National Academies Press, 2006. URL: https://www.ncbi.nlm.nih.gov/books/NBK19849/
  80. Promising Approaches to the Development of Immunomodulation for the Treatment of Infectious Diseases. Report of a Workshop. URL: https://www.ncbi.nlm.nih.gov/books/NBK19846/
  81. Cong Y., Feng T., Fujihashi K. et al. A dominant., coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA. 2009; 106(46): 19256-19261. doi: 10.1073/ pnas.0812681106.
  82. Smith P.M., Garrett W.S. The gut microbiota and mucosal T cells. Front Microbiol. 2011;2:111. doi: 10.3389/fmicb.2011.00111
  83. Taverniti V., Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 2011;6(3):261-274. doi: 10.1007/s12263-011-0218-x.
  84. Johnstone J., Meade M., Marshall J., et al.; PROSPECT Investigators and the Canadian Critical Care Trials Group. Probiotics: Prevention of Severe Pneumonia and Endotracheal Colonization Trial-PROSPECT: protocol for a feasibility randomized pilot trial. Pilot Feasibility Stud. 2015;1:19. doi: 10.1186/s40814-015-0013-3.
  85. Kalima K., Lehtoranta L., He L., et al. Probiotics and respiratory and gastrointestinal tract infections in Finnish military conscripts - a randomised placebo-controlled double-blinded study Benef Microbes. 2016;7(4):463-71. Doi: 10.3920/ BM2015.0172.
  86. Tapiovaara L., Kumpu M., Mäkivuokko H., et al. Human rhinovirus in experimental infection after peroral Lactobacillus rhamnosus GG consumption, a pilot study Int Forum Allergy Rhinol. 2016;6(8):848-53. doi: 10.1002/alr.21748.
  87. Wang B., Hylwka T., Smieja M., et al. Probiotics to Prevent Respiratory Infections in Nursing Homes: A Pilot Randomized Controlled Trial. J Am Geriatr Soc. 2018;66(7):1346-52. doi: 10.1111/jgs.15396.
  88. Laursen R.P., Hojsak I. Probiotics for respiratory tract infections in children attending day care centers-a systematic review. Eur J Pediatr. 2018;177(7):979-94. doi: 10.1007/s00431-018-3167-1.
  89. Akour A. Probiotics and COVID-19: is there any link? Lett Appl Microbiol. 2020;71(3):229-234. doi: 10.1111/lam.13334.
  90. Bottari B, Castellone V, Neviani E. Probiotics and Covid-19. Int J Food Sci Nutr. 2021;72(3):293-299. doi: 10.1080/09637486.2020.1807475.
  91. Parisi G.F., Carota G., Castruccio Castracani C., et al. Nutraceuticals in the Prevention of Viral Infections, including COVID-19, among the Pediatric Population: A Review of the Literature. Int J Mol Sci. 2021;22(5):2465. Doi: 10.3390/ ijms22052465.
  92. Peng J., Zhang M., Yao G., Kwok L.Y., Zhang W. Probiotics as Adjunctive Treatment for Patients Contracted COVID-19: Current Understanding and Future Needs. Front Nutr. 2021;8:669808. doi: 10.3389/fnut.2021.669808.
  93. Гриневич В.Б., Кравчук Ю.А., Ткаченко Е.И., и др. Особенности ведения больных с гастроэнтерологической патологией в условиях пандемии COVID-19. Экспериментальная и клиническая гастроэнтерология. 2020;176(4):3-18
  94. Ткачева О.Н., Котовская Ю.В, Алексанян Л.А., и др. Согласованная позиция экспертов Российской ассоциации геронтологов и гериатров. Новая коронавирусная инфекция SARS-CoV-2 (COVID19) у пациентов пожилого и старческого возраста: особенности профилактики, диагностики и лечения. Кардиоваскулярная терапия и профилактика. 2020;19(3):2601
  95. Wen X., Chen X., Zhou X. Rebamipide inhibited expression of TLR4 and TNF-alpha release in pulmonary epithelial cell line A549 induced by lipopolysaccharide. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009;34(5):457-60.
  96. Yasuda T., Chiba H., Satomi T., et al. Preventive effect of rebamipide gargle on chemoradiotherpy-induced oral mucositis in patients with oral cancer: a pilot study. J Oral Maxillofac Res. 2012;2(4):e3. doi: 10.5037/jomr.2011.2403.
  97. Akagi S., Fujiwara T., Nishida M., et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapyinduced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. Doi:10.1186/ s40780-019-0146-2.
  98. Urita Y., Watanabe T., Maeda T., et al. Rebamipide and mosapride enhance pilocarpine-induced salivation. N Am J Med Sci. 2009;1(3): 121-24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies