Potential clinically significant drug interactions of drugs with green tea


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

No drug is absolutely safe, due to the risk of adverse drug reactions (ADRs). Serious ADRs that increase the risk of death or mortality and / or morbidity and / or require hospitalization are called drug-induced diseases. Often, drug-induced diseases can be prevented by adjusting modifiable risk factors including potential interactions with food (GT - for example green tea). GT has a complex chemical composition, including polyphenols (~30% dry weight), proteins (~15% dry weight), amino acids (~4% dry weight), dietary fiber (~26% dry weight), carbohydrates (~7% dry weight), fats (~7% dry weight), pigments (~2% dry weight), minerals (~5% dry weight). Polyphenolic compounds in PP contain many catechins, including epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate, epicatechin and epigallocatechin. The content of EGCG in the GT is associated with various types of drug interactions. Also, methylxanthines (including caffeine) and purine alkaloids contained in the GT can interact with drugs. This article provides an overview of open literature sources on the pharmacodynamic and pharmacokinetic types of interactions between drugs and components of GT.

Full Text

Restricted Access

About the authors

Anton P. Pereverzev

Russian Medical Academy for Continuing Professional Education

Email: acchirurg@mail.ru
Cand. Sci. (Med.), Associate Professor, Departmentof the Therapy and Polymorbid Pathology Moscow, Russia

O. D Ostroumova

Russian Medical Academy for Continuing Professional Education; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Moscow, Russia

A. V Filippova

Russian Medical Academy for Continuing Professional Education

Moscow, Russia

References

  1. Сычев Д.А, Остроумова О.Д., Кочетков А.И. и др. Лекарственно-индуцированные заболевания: эпидемиология и актуальность проблемы. Фарматека. 2020;27(5):77-84
  2. Angamo M.T., Chalmers L., Curtain C.M., Bereznicki L.R. Adverse-Drug-Reaction-Related Hospitalisations in Developed and Developing Countries: A Review of Prevalence and Contributing Factors. Drug Saf. 2016;39(9):847-57. doi: 10.1007/s40264-016-0444-7.
  3. Tisdale J.E., Miller D.A. Drug Induced Diseases: Prevention, Detection, and Management. 3rd Ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018. 1399 р.
  4. Сычев Д.А, Остроумова О.Д., Переверзев А.П. и др. Лекарственно-индуцированные заболевания: подходы к диагностике, коррекции и профилактике. Фармаконадзор. Фарматека. 2020;27(6):113-26.
  5. Meyboodi M., Mohammadpour A.H., EmamiS.A., et al. Drug Interactions of Green Tea. J Pharm Care. 2020;8(4):196-203.
  6. Song J.M., Seong B.L. Tea catechins as a potential alternative anti-infectious agent. Expert. Rev. Anti Infect. Ther. 2007;5(3):497-506. doi: 10.1586/14787210.5.3.497.
  7. Chakraborty M., Kamath J.V. Pharmacodynamic interaction of green tea extract with hydrochlorothiazide against ischemia-reperfusion injury-induced myocardial infarction. J Adv Pharm Technol Res. 2014;5(3):134-39. doi: 10.4103/2231-4040.137428.
  8. Shehab N.G., Khan R.K.G., Elgailani E.S.E., Shawish K.Y.A. Possible intrusive food interaction with oral dabigatran's anticoagulant activity in a rat models. Tropical J Pharm Res. 2018;17(10):2031-36.
  9. Ali B., MS Jamal Q., Shams S., et al. In silico analysis publication. A.P. Pereverzev - collection, analysis, and systematisation of literature data, writing and formatting of the paper, carrying responsibility for all aspects of the study related to data reliability. A.V. Filippova - collection, analysis, and systematisation of literature data, writing of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer's disease treatment. CNS. Neurol Disord Drug Targ. 2016;15(5):624-Doi: 10.2 1 74/187152 7315666160321110 607.
  10. Kiss T., Timr Z., Szab A., et al. Effect of green tea on the gastrointestinal absorption of amoxicillin in rats. BMC. Pharmacol Toxicol. 2019;20(1):54. doi: 10.1186/s40360-019-0332-8
  11. Misaka S., Miyazaki N., Fukushima T., et al. Effects of green tea extract and (-)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats. Phytomed. 2013;20(14):1247-50. doi: 10.1016/j.phymed.2013.07.003.
  12. Shan Y., Zhang M., Wang T., et al. Oxidative Tea Polyphenols Greatly Inhibit the Absorption of Atenolol. Front Pharmacol. 2016;7:192. doi: 10.3389/fphar.2016.00192.
  13. Cheeseman H.J., Neal M.J. Interaction of chlorpromazine with tea and coffee. Br J Clin Pharmacol. 1981;12(2):165-69. doi: 10.1111/365-2125.1981.tb01196.x.
  14. Ikeda H., Tsuji E., Matsubara T., et al. Incompatibility between propericiazine oral solution and tea-based drink. Chem Pharm Bull. (Tokyo). 2012;60(9):1207-11. doi: 10.1248/cpb.c12-00116.
  15. Ohata T., Ikeda H., Inenaga M., et al. Drug-tea polyphenol interaction (II) complexation of piperazine derivatives with green tea polyphenol. Thermochim. Acta. 2017;653:1-7.
  16. Oda K., Murakami T. Pharmacokinetic interaction of green tea beverage containing cyclodextrins and high concentration catechins with P-glycoprotein substrates in LLC-GA5-COL150 cells in vitro and in the small intestine of rats in vivo. J Pharm Pharmacol. 2017;69(12):1736-44. doi: 10.1111/jphp.12817.
  17. Kim T.E., Shin K.H., Park J.E., et al. Effect of green tea catechins on the pharmacokinetics of digoxin in humans. Drug Des Devel Ther. 2018;12:2139-47. doi: 10.2147/DDDT.S148257.
  18. Maher H.M., Alzoman N.Z., Shehata S.M., Abahussain A.O. UPLC-ESI-MS/MS study of the effect of green tea extract on the oral bioavailability of erlotinib and lapatinib in rats: Potential risk of pharmacokinetic interaction. J Chromatogr B Analyt and formatting of the paper, carrying responsibility for all aspects of the study related to data reliability.
  19. Tian D.D., Kellogg J.J., Okut N., et al. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation. Drug Metab Dispos. 2018;46(5):552-60. Doi: 10.1124/ dmd.117.079491.
  20. Jang E.H., Choi J.Y., Park C.S., et al. Effects of green tea extract administration on the pharmacokinetics of clozapine in rats. J Pharm Pharmacol. 2005;57(3):311-16. doi: 10.1211/0022357055687.
  21. Mizuma T., Awazu S. Dietary polyphenols (-)-epicatechin and chrysin inhibit intestinal glucuronidation metabolism to increase drug absorption. J Pharm Sci. 2004;93(9):2407-10. doi: 10.1002/jps.20146.
  22. Yuan L., Liu M., Shi Y., et al. Effect of (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate on the binding of tegafur to human serum albumin as determined by spectroscopY., isothermal titration calorimetry., and molecular docking. J Biomol Struct Dyn. 2019;37(11):2776-88. doi: 10.1080/07391102.2018.1505550.
  23. Satoh T., Fujisawa H., Nakamura A., et al. Inhibitory Effects of Eight Green Tea Catechins on Cytochrome P450 1A2, 2C9, 2D6, and 3A4 Activities. J Pharm Pharm Sci. 2016;19(2):188-97. Doi: 10.18433/ J3MS5C.
  24. Jiang X., Sun Y., Shang L., et al. Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. J Mater Chem. B. 2019;7(39):5972-82. Doi: 10.1039/ c9tb01546a.
  25. Jana S., Rastogi H. Effects of Caffeic Acid and Quercetin on In Vitro PermeabilitY., Metabolism and In Vivo Pharmacokinetics of Melatonin in Rats: Potential for Herb-Drug Interaction. Eur J Drug Metab Pharmacokinet. 2017;42(5):781-91. doi: 10.1007/s13318-016-0393-7.
  26. Nishikawa M., Ariyoshi N., Kotani A., et al. Effects of continuous ingestion of green tea or grape seed extracts on the pharmacokinetics of midazolam. Drug Metab Pharmacokinet. 2004;19(4):280-89. doi: 10.2133/dmpk.19.280.
  27. Han X., Zhang H., Hao H., et al. Effect Of epigallocatechin-3-gallate on the pharmacokinetics of amlodipine in rats. Xenobiotica. 2019;49(8):970-74. doi: 10.1080/00498254.2018.1519732.
  28. Paul D., Surendran S., Chandrakala P., et al. An assessment of the impact of green tea extract on palbociclib pharmacokinetics using a validated UHPLC-QTOF-MS method. Biomed Chromatogr. 2019;33(4):e4469. doi: 10.1002/bmc.4469.
  29. Koren R., Lerner A., Tirosh A., et al. The Use of Complementary and Alternative Medicine in Hospitalized Patients with Type 2 Diabetes Mellitus in Israel. J Altern Complement Med. 2015;21(7):395-400. Doi: 10.1089/ acm.2015.0019.
  30. Alemdaroglu N.C., Dietz U., Wolffram S, Spahn-Langguth H, Langguth P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: potential risk of diminished folic acid bioavailability. Biopharm Drug Dispos. 2008;29(6):335-48. doi: 10.1002/bdd.617.
  31. Peng X., Zhou R., Wang B., et al. Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Sci Rep. 2014;4:6251. Doi: 10.1038/ srep06251.
  32. Renfan X., Ke Y., Jie D., Guangzhi C. Effect of green tea supplementation on blood pressure. Med. 2020;99(6):e19047. Doi: 10.1097/ MD.0000000000019047.
  33. Persson I., Persson K., Hägg S., Andersson, R. Effects of green tea, black tea and Rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr. 2010;13(5):730-37. Doi: 10.1017/ S1368980010000170.
  34. Dong J., Xu X., Liang Y., et al. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct. 2011;2(6):310-19. doi: 10.1039/c1fo10023h.
  35. Fauzi N.M., Kumolosasi E., Jasamai M., Azmi N. Interaction between green tea and perindopril reduces inhibition of angiotensinconverting enzyme activity. Trop J Pharmac Res. 2019;18(6):1185-90. doi: 10.4314/tjpr. v18i6.6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies