The role of magnesium deficiency in the pathogenesis of undifferentiated connective tissue dysplasia


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Magnesium is the second most common intracellular cation and plays an essential role in the implementation of cellular functions. Increasing importance is attached to the effect of magnesium deficiency on the structure and mechanical homeostasis of connective tissue (CT). Magnesium deficiency causes the development of a number of conditions, and undifferentiated CT dysplasia is one of the most common. This review highlights modern approaches to assessing the relationship between magnesium deficiency and the development of CT pathology. Mg2+ ions participate in the stabilization of the secondary and tertiary structures of nucleic acids, forming cationic bridges between anionic phosphate groups. Magnesium is involved in the regulation of the balance of formation, degradation of fibrillar and non-fibrillar components of the extracellular matrix by decreasing the expression of matrix metalloproteinase genes and stimulating collagen and aggrecan synthesis. Magnesium enhances the mitotic activity of CT cells by increasing the processes of protein synthesis and triggering signaling pathways associated with the mammalian target of rapamycin. Mg2+ ions promote the conversion of fibroblast integrins into a high-affinity form, allowing them to bind to collagen, thereby increasing tissue stability and integrity. Magnesium deficiency is associated with an increase in the activity of matrix metalloproteinases, which is a key factor in CT degradation. A lack of magnesium leads to the accumulation of defective collagen, a decrease in the synthesis of structural and signal proteins, nucleic acids, and suppression of the mitotic activity of cells. A decrease in the affinity of fibroblast integrins for collagen arising under conditions of magnesium deficiency leads to tissue disorganization. Thus, magnesium deficiency is associated with impaired cell functioning and the integrity of the CT extracellular matrix.

Full Text

Restricted Access

About the authors

N. V Izmozherova

Ural State Medical University

Email: nadezhda_izm@mail.ru
Dr. Sci. (Med.), Associate Professor, Head of the Department of Pharmacology and Clinical Pharmacology

M. A Shambatov

Ural State Medical University

V. M Bakhtin

Ural State Medical University

A. A Popov

Ural State Medical University

References

  1. Малев, Э.Г., Березовская, Г.А., Парфенова, Н.Н. и др. Наследственные нарушения соединительной ткани в кардиологии. Диагностика и лечение. Российские рекомендации (I пересмотр). Российский кардиологический журнал. 2013;1(99):1-32. doi: 10.15829/1560-4071- 2013-1s1-5-32.
  2. Hakim A.J., Sahota A. Joint hypermobility and skin elasticity: the hereditary disorders of connective tissue. Clin Dermatol. 2006;24(6):521-33. Doi: 10.1016/j. clindermatol.2006.07.013.
  3. Бен Салха М., Репина Н.Б. Клиническая диагностика недифференцированной дисплазии соединительной ткани. Российский медико-биологический вестник им. академика И.П. Павлова. 2016;24(4):164-72. doi: 10.23888/PAVL0VJ20164164-172.
  4. Клинические рекомендации российского научного медицинского общества терапевтов по диагностике, лечению и реабилитации пациентов с дисплазиями соединительной ткани (первый пересмотр). Медицинский вестник Северного Кавказа. 2018;1,2(13):137-210. Doi: 10.14300/ mnnc.2018.13037.
  5. Кытько О.В., Дыдыкина И.С., Санькова М.В. и др. Патогенетические аспекты недостаточности магния при синдроме дисплазии соединительной ткани. Вопросы питания. 2020;89(5):35-43. doi: 10.24411/0042-8833-2020-10064.
  6. Senni K., Foucault Bertaud A., Godeau G. Magnesium and connective tissue. Magnes Res. 2003; 16(1):70-4.
  7. Be Baaij J.H., Hoenderop J.G., Bindels R.J. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1-46. Doi: 10.1152/ physrev.00012.2014.
  8. Bobkowski W., Nowak A., Durlach J. The importance of magnesium status in the pathophysiology of mitral valve prolapse. Magnes Res. 2005;18(1):35-52.
  9. Belluci M.M., de Molon R.S., Rossa C.Jr, et al. Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J. Nutr Biochem. 2020;77:108301. doi: 10.1016/j.jnutbio.2019.108301.
  10. Li Q., Larusso J., Grand-Pierre A.E., Uitto J. Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(-/-) mice-potential for treatment of pseudoxanthoma elasticum. Clin Transl Sci. 2009;2(6):398-404. doi: 10.1111/j.1752-8062.2009.00161.x
  11. Kumar V., Abbas A., Fausto N., Aster J. Robbins and Cotran Pathologic Basis of Disease. Philadelphia, PA: Saunders/Elsevier Inc., 8th ed., 2009. 1456 p.
  12. Gilbert S.J., Duance VC., Mason D.J. Does protein kinase R. mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res Ther. 2004;6(1):R46-R55. doi: 10.1186/ar1024.
  13. Chen R., Zhou X., Yin S., et al. [Study on the protective mechanism of autophagy on cartilage by magnesium sulfate]. Zhongguo Xiu Fu Chong Jian WaiKe Za Zhi. 2018;32(10):1340-45. Chinese. doi: 10.7507/1002-1892.201804015.
  14. Santamaria S. ADAMTS-5: A difficult teenager turning 20. Int J. Exp Pathol. 2020;101(1-2):4-20. doi: 10.1111/iep.12344.
  15. Yao H., Xu J.K., Zheng N.Y., et al. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats. Osteoarthritis Cartilage. 2019;27(12):1811-21. Doi: 10.1016/j. joca.2019.08.007.
  16. Shibata M., Ueshima K., Harada M., et al. Effect of Magnesium Sulfate Pretreatment and Significance of Matrix Metalloproteinase-1 and lnterleukin-6 Levels in Coronary Reperfusion Therapy for Patients wth Acute Myocardial lnfarction. Angiology. 1999;50(7):573- 82. doi: 10.1177/000331979905000707.
  17. Guo H., Lee J.D., Uzui H., et al. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Circ J. 2006;70(1):141-46. doi: 10.1253/circj.70.141.
  18. Yue H., Lee J.D., Shimizu H., et al. Effects of magnesium on the production of extracellular matrix metalloproteinases in cultured rat vascular smooth muscle cells. Atherosclerosis. 2003;166(2):271-77. doi: 10.1016/s0021-9150(02)00390-8.
  19. Igondjo Tchen S., Pages N., Bac P., et al. Marfan syndrome, magnesium status and medical prevention of cardiovascular complications by hemodynamic treatments and antisense gene therapy. Magnes Res. 2003;16(1):59-64.
  20. Durlach J. Primary mitral valve prolapse: a clinical form of primary magnesium deficit. Magnes Res. 1994;7(3-4):339-40.
  21. Tsipouras P., Devereux R.B. Marfan syndrome: genetic basis and clinical manifestations. Semin Dermatol. 1993;12(3):219-28.
  22. Мартынов А.И., Гудилин В.А., Дрокина О.В. и др. Дисфункция эндотелия у пациентов с дисплазиями соединительной ткани. Лечащий врач. 2015;15(2):18-21.
  23. Chang J., Yu D., Ji J., et al. The Association Between the Concentration of Serum Magnesium and Postmenopausal Osteoporosis. Front Med (Lausanne). 2020;7:381. doi: 10.3389/fmed.2020.00381.
  24. Seelig M.S. Magnesium Deficiency in the Pathogenesis of Disease: Early Roots of Cardiovascular, Skeletal and Renal Abnormalities. New York, USA: Springer-Verlag, 1980. 488 p. doi: 10.1007/978-1-4684-9108-1.
  25. Jiang Q., Uitto J. Restricting dietary magnesium accelerates ectopic connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6(-/-) ). Exp Dermatol. 2012;21(9):694-99. doi: 10.1111/j.1600-0625.2012.01553.x.
  26. LaRusso J., Jiang Q., Li Q., Uitto J. Ectopic mineralization of connective tissue in Abcc6-/- mice: effects of dietary modifications and a phosphate binder-- a preliminary study. Exp Dermatol. 2008;17(3):203-7. doi: 10.1111/j.1600-0625.2007.00645.x.
  27. LaRusso J., Li Q., Jiang Q., Uitto J. Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6(-/-)). J. Invest Dermatol. 2009;129(6):1388-94. doi: 10.1038/jid.2008.391.
  28. Торшин И.Ю., Громова О.А. Дисплазия соединительной ткани, клеточная биология и молекулярные механизмы воздействия магния. Русский медицинский журнал. 2008;16(4):230-38.
  29. Quan W., Yin Y., Xi M., et al. Antioxidant properties of magnesium lithospermate B. contribute to the cardioprotection against myocardial ischemia/ reperfusion injury in vivo and in vitro. J. Tradit Chin Med. 2013;33(1):85-91. doi: 10.1016/s0254-6272(13)60106-5.
  30. Pages N., Gogly B., Godeau G., et al. Structural alterations of the vascular wall in magnesium-deficient mice. A possible role of gelatinases A (MMP-2) and B. (MMP-9). Magnes Res. 2003;16(1):43-8.
  31. Yue J., Zhang K., Chen J. Role of integrins in regulating proteases to mediate extracellular matrix remodeling. Cancer Microenviron. 2012;5(3):275-83. doi: 10.1007/s12307-012-0101-3.
  32. Gao F., Li J.M., Xi C., et al. Magnesium lithospermate B. protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol Sin. 2019;40(7):867-78. Doi: 10.1038/ s41401-018-0189-1.
  33. Xu K., Zang X., Peng M., et al. Magnesium Lithospermate B. Downregulates the Levels of Blood Pressure, Inflammation, and Oxidative Stress in Pregnant Rats with Hypertension. Int J. Hypertens. 2020;2020:6250425. doi: 10.1155/2020/6250425.
  34. Nunes A.M., Minetti C.A.S.A., Remeta D.P., Baum J. Magnesium Activates Microsecond Dynamics to Regulate Integrin-Collagen Recognition. Structure. 2018;26(8): 1080-90.e5. Doi: 10.1016/j. str.2018.05.010.
  35. Zhang K., Chen J. The regulation of integrin function by divalent cations. Cell Adh Migr. 2012;6(1):20-9. doi: 10.4161/cam.18702.
  36. Nie X., Sun X., Wang C., Yang J. Effect of magnesium ions/Type I. collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020;7(1):53-61. doi: 10.1093/rb/rbz033.
  37. Тихонова О.В., Дрокина О.В., Моисеева Н.Е. и др. Оценка информативности методов определения содержания магния в организме на примере пациентов с признаками дисплазии соединительной ткани. Архивъ внутренней медицины. 2014;1(15):19-24.
  38. Paik Y.H., Yoon Y.J., lee H.C., et al. Antifibrotic effects of magnesium lithospermate B. on hepatic stellate cells and thioacetamide-induced cirrhotic rats. Exp Mol Med. 2011;43(6):341-49. Doi: 10.3858/ emm.2011.43.6.037.
  39. Maier J.A., Malpuech-Brugere C., Zimowska W., et al. Low magnesium promotes endothelial cell dysfunction: implication for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta. 2004;1689(1):13-21. Doi: 10.1016/j. bbadis.2004.01.002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies