Факторы риска лекарственно-индуцированных заболеваний. Часть 3. Межлекарственные взаимодействия и взаимодействие лекарственных средств с пищей


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Полипрагмазия значительно повышает риск межлекарственных взаимодействий (МЛВД), приводя не только к увеличению числа нежелательных реакций (НР), но и к снижению эффективности применяемых препаратов. МЛВД можно разделить на две основные группы: фармакокинетические и фармакодинамические. Лекарственные средства (ЛС), пищевые продукты, напитки могут изменять действие препаратов, влияя на фармакодинамические механизмы путем синергетического, аддитивного или антагонистического воздействия или фармакокинетических процессов, таких как абсорбция, метаболизм и экскреция, что приводит к снижению эффективности ЛС или повышению их токсичности. ЛС также могут изменять способность организма усваивать определенные продукты или питательные вещества, необходимые для поддержания здоровья человека. Одной из главных причин МЛВД служит индукция, или ингибирование, ферментов цитохрома P-450 (CYP450). Все чаще выявляется роль переносчиков ЛС, особенно Р-гликопротеина (P-gp), в причинных взаимодействиях между ЛС. P-gp влияет на абсорбцию, распределение и выведение, следовательно, играет важную роль в фармакокинетических МЛВД. Данные о распространенности случаев взаимодействия ЛС и продуктов питания немногочисленны. Однако известно, что большинство назначений ЛС осуществляется без учета времени приема пищи. К назначаемым препаратам относятся œхароснижающие, антигипертензивные препараты, в т.ч. диуретики, блокаторы ренин-ангиотензин-альдостероновой системы, ß-адреноблокаторы, анальгетики и др. - одни из самых распространенных в клинической практике. Помимо взаимодействий ЛС с пищевыми продуктами и напитками описаны случаи взаимодействия ЛС с травами, биологически активными добавками. Воздействие сразу на несколько механизмов затрудняет диагностику МЛВД, поэтому последние по-прежнему остаются одним из самых важных факторов риска лекарственно индуцированных заболеваний. Для того чтобы оптимизировать лечение, врачам необходимо учитывать факторы, связанные как с пациентом (генетическая предрасположенность, возраст, пол, физиологический статус и т.д.), так и с ЛС. Соответствующая осведомленность о возможных МЛВД имеет решающее значение для предотвращения НР и изменения эффективности ЛС и их последствий.

Полный текст

Доступ закрыт

Об авторах

Д. А Сычев

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

Ольга Дмитриевна Остроумова

Российская медицинская академия непрерывного профессионального образования

Email: ostroumova.olga@mail.ru
д.м.н., профессор, зав. кафедрой терапии и полиморбидной патологии им. акад. М.С. Вовси Москва, Россия

А. П Переверзев

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

М. С Черняева

Центральная государственная медицинская академия УДП РФ

Москва, Россия

А. И Кочетков

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

М. В Клепикова

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

Е. Ю Эбзеева

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

В. А Дё

Российская медицинская академия непрерывного профессионального образования

Москва, Россия

Список литературы

  1. Day R.O., Snowden L., McLachlan A.J. Life-threatening drug interactions: what the physician needs to know.Intern Med J. 2017;47(5):501-12. doi: 10.1111/imj.13404.
  2. Сычев Д.А. (ред.). Полипрагмазия в клинической практике: проблема и решения. Учебное пособие для врачей. 2-е издание, исправленное и дополненное. СПб., 2018. 272 с.
  3. Tisdale J.E., Miller D.A. (ed.). Drug Induced Diseases: Prevention, Detection, and Management. 3rd Ed. Bethesda, Md.: American Society of Health-System Pharmacists, 2018. 1399 р.
  4. Palleria C., Di Paolo A., Giofrè C., et al. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci. 2013;18(7):601-10.
  5. Létinier L., Cossin S., Mansiaux Y, et al. Risk of Drug-Drug Interactions in Out-Hospital Drug Dispensings in France: Results From the DRUG-Drug Interaction Prevalence Study. Front Pharmacol. 2019;10:265. doi: 10.3389/fphar.2019.00265.
  6. Dechanont S., Maphanta S., Butthum B., et al. Hospital admissions/visits associated with drug-drug interactions: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2014;23(5):489-97. doi: 10.1002/pds.3592.
  7. Лепахин В.К, Казаков А.С., Астахова А.В. Фармакоэпидемиологическое исследование нежелательных реакций, связанных с взаимодействием лекарственных средств. Клиническая фармакология и терапия. 2013;(4):92-6.
  8. Mutalik M., Sanghavi D. Review of Drug interactions: A Comprehensive Update. British J Pharmac Res. 2014;4(8):954-80. Doi: 10.9734/ BJPR/2014/85318.
  9. Katzung B.G., Master S.B., Trevor A.J. Basic and Clinical Pharmacology. 12th ed. Important drug interactions and their mechanisms. New Delhi: New Delhi Tata McGraw Hill. 2012. 1229 с.
  10. Кукес В.Г Клиническая фармакология. Учебник. Взаимодействие лекарственных средств. М., 2008. 1056 с.
  11. Перцев И.М. Взаимодействие лекарств и эффективность фармакотерапии. Х., 2001. 784 с.
  12. Mantia G., Provenzano G. Rilevanza clinica delle interazioni farmacologiche di tipo farmacocinetico. Acta Med Mediterr. 2008;24(1):23-7.
  13. Johnson B.F, Bustrack J.A., Urbach D.R., et al. Effect of metoclopramide on digoxin absorption from tablets and capsules. Clin Pharmacol Ther 1984;36(6):724-30. Doi: 10.1038/ clpt.1984.249.
  14. Thummel K.E., Wilkinson G.R. In vitro and in vivo drug interactions involving human CYP3A. Ann Rev Pharmacol Toxicol. 1998;38:389-430. doi: 10.1146/annurev.pharmtox.38.1.389.
  15. Hartter S., Sennewald R., Nehmiz G., et al. Oral bioavailability of dabigatran etexilate (Pradaxa) after co-medication with verapamil in healthy subjects. Eur J Clin Pharmacol. 2013;75(4): 1053-62.
  16. Kawabata M., Yokoyama Y, Sasano T., et al. Bleeding events and activated partial thromboplastin time with dabigatran in clinical practice. I Cardiol. 2013;62(2):121-26. doi: 10.1016/j.jjcc.2013.03.010.
  17. Finch A., Pillans P P-glycoprotein and its role in drug-drug inter-actions. Austral Prescriber 2014;37:137-39. Doi: 10.18773/ austprescr.2014.050.
  18. Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103-41. doi: 10.1016/j.pharmthera.2012.12.007.
  19. Ogu C.C., Маха J.L. Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent). 2000;13(4):421-23. doi: 10.1080/08998280.2000.11927719.
  20. Wang H., Tompkins L.M. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008;9(7):598-610. doi: 10.2174/138920008785821710.
  21. Wagner F., Kalusche D., Trenk D., et al. Drug interaction between propafenone and metoprolol. Br J Clin Pharmacol. 1987;24(2):213-20. doi: 10.1111/j.1365-2125.1987.tb03164.x.
  22. Muirhead G.J., Wulff M.B., Fielding A., et al. Pharmacokinetic interactions between sildenafil and saquinavir/ ritonavir Br J Clin Pharmacol. 2000;50(2):99-107. doi: 10.1046/j.1365-2125.2000.00245.x.
  23. Gruer P.J., Vega J.M., Mercuri M.F., et al. Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin. Am J Cardiol. 1999;84(7):811-15. doi: 10.1016/s0002-9149(99)00442-7.
  24. Martin J., Krum H. Cytochrome P450 drug interactions within the HMG-CoA reductase inhibitor class: Are they clinically relevant? Drug Saf. 2003;26(1):13-21. doi: 10.2165/00002018200326010-00002.
  25. Lee A.J., Maddix D.S. Rhabdomyolysis secondary to a drug interaction between simvastatin and clarithromycin. Ann Pharmacother. 2001;35(1):26-31. doi: 10.1345/aph.10177.
  26. Stirling C.M., Isles C.G. Rhabdomyolysis due to simvastatin in a transplant patient: Are some statins safer than others? Nephrol Dial Transplant. 2001;16(4):873- 74. Doi: 10.1093/ ndt/16.4.873.
  27. Wagner J., Suessmair C., Pfister H.W. Rhabdomyolysis caused by co-medication with simvastatin and clarithromycin. Neurol. 2009;256(7):1182-83. doi: 10.1007/s00415-009-5078-6.
  28. Nolan C.M., Sandblom R.E., Thummel K.E., et al. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest. 1994;105(2):408-11. doi: 10.1378/chest.105.2.408.
  29. Murphy R., Swartz R., Watkins P.B. Severe acetaminophen toxicity in a patient receiving isoniazid. Ann Intern Med. 1990;113(10):799-800. doi: 10.7326/0003-4819-113-10-799.
  30. Bonate PL., Reith K., Weir S. Drug interactions at the renal level. Implications for drug development. Clin Pharmacokinet. 1998;34(5):375-404. doi: 10.2165/00003088-199834050-00004.
  31. Kristensen M.B. Drug interactions and clinical pharmacokinetics. Clin Pharmacokinet. 1976;1(5):351-72. doi: 10.2165/00003088-197601050-00003.
  32. Ronchera C.L., Hernandez T., Peris J.E., et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15(5):375-79. doi: 10.1097/00007691-199310000-00004.
  33. Ito S., Kusuhara H., Yokochi M., et al.Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340(2):393-403. doi: 10.1124/jpet.111.184986.
  34. Speeg K.V., Leighton J.A., Maldonado A.L. Toxic delirium in a patient taking amantadine and trimethoprim-sulfamethoxazole. Am J Med Sci. 1989;298(6):410-12. doi: 10.1097/00000441-198912000-00010.
  35. Fagerholm U. Prediction of human pharmacokinetics-renal metabolic and excretion clearance. J Pharm Pharmacol. 2007;59(11):1463-71. Doi: 10.1211/ jpp.59.11.0002.
  36. Ogawa R., Echizen H. Drug-drug interaction profiles of proton pump inhibitors. Clin Pharmacokinet. 2010;49(8):509-33. doi: 10.2165/11531320 000000000-00000.
  37. Handler J. Lithium and antihypertensive medication: A potentially dangerous interaction. J Clin Hypertens (Greenwich). 2009;11(12):738-42. doi: 10.1111/j.1751-7176.2009.00181.x.
  38. Amdisen A. Lithium and drug interactions. Drugs. 1982;24(2):133-39. doi: 10.2165/00003495198224020-00003.
  39. Сычев Д.А., Остроумова О.Д., Кочетков А.И. и др. Лекарственно-индуцированные заболевания: эпидемиология и актуальность проблемы. Фарматека. 2020;27(5):77-84. Doi: 10.18565/ pharmateca.2021.5.77-84.
  40. Cunningham G., Dodd T.R., Grant D.J., et al. Drug-related problems in elderly patients admitted to Tayside hospitals, methods for prevention and subsequent reassessment. Age and Ageing. 1997;26(5):375-82. Doi: 10.1093/ ageing/26.5.375.
  41. Mannesse C.K., Derkx F.H., De Ridder M.A., et al. Adverse drug reactions in elderly patients as contributing factor for hospital admission: cross sectional study. BMJ. 1997;315(7115):1057-58. doi: 10.1136/bmj.315.7115.1057.
  42. Routledge PA., O'Mahony M.S., Woodhouse K.W. Adverse drug reactions in elderly patients. Br J Clin Pharmacol. 2004;57(2):121-26. doi: 10.1046/j.1365-2125.2003.01875.x.
  43. Sandson N.B., Armstrong S.C., Cozza K.L. An overview of psychotropic drug-drug interactions. Psychosomat. 2005;46(5):464-94. doi: 10.1176/appi.psy.46.5.464.
  44. Freeman B.D., Dixon D.J., Coopersmith C.M., et al. Pharmacoepidemiology of QT-interval prolonging drug administration in critically ill patients. Pharmacoepidemiol Drug Saf. 2008;17(10):971-81. doi: 10.1002/pds.1637.
  45. Остроумова О.Д., Голобородова И.В. Лекарственно-индуцированное удлинение интервала QT: распространенность, факторы риска, лечение и профилактика. Consilium Medicum. 2019;21(5):62-7. Doi: 10.2644 2/20751753.2019.5.190415.
  46. Nusbaum N.J. Aging and sensory senescence. Southern Med J. 1999;92(3):267-75. doi: 10.1097/00007611-199903000-00002.
  47. Loh KY, Ogle J. Age related visual impairment in the elderly. Med J Malaysia. 2004;59(4):562-8, quiz 569.
  48. Переверзев А.П., Остроумова О.Д. Взаимодействие пищевых продуктов и лекарственных средств как фактор риска развития лекарственно индуцированных заболеваний: эпидемиология, факторы риска, потенциальные механизмы развития взаимодействий. Качественная клиническая практика. 2021;(3):16-23. doi: 10.37489/2588-0519-2021-3-16-23.
  49. Schmidt L.E., Dalhoff K. Food-drug interactions. Drugs. 2002;62(10):1481-502. doi: 10.2165/00003495-200262100-00005.
  50. Abdollahi M., Eslami S., Taherzadeh Z., et al. Factors Associated with Potential Food-Drug Interaction in Hospitalized Patients: A Cross-Sectional Study in Northeast Iran. Evid Based Care. 2018;8(1):27-34. doi: 10.22038/EBCJ.2018.24726.1544.
  51. Neves S.J.F., Marques A. Prevalence and predictors of potential drug-food interactions among the elderly using prescription drugs. J Chem Pharmac Res. 2016;8(4):965-72.
  52. Koziolek M., Alcaro S., Augustijns P, et al. The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31-59. doi: 10.1016/j.ejps.2019.04.003.
  53. European Medicines Agency (EMA), 2012. Guideline on the Investigation of Drug Interactions.Committee for Human Medicinal Products (CHMP) Available from: https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf. (access date: 29.09.2021).
  54. Food and drug Administration (FDA), 2002. Guidance for Industry: Food-Effect Bioavailability and Fed Bioequivalence Studies. Available from. https://www.fda. (accessed 29.09.2021) gov/downloads/drugs/guidancecomplianceregulatory information/guidances/ucm0 70241.pdf (access date: 06.08.2021).
  55. Koch K.M., Reddy N.J., Cohen R.B., et al. Effects of food on the relative bioavailability of lapatinib in cancer patients. J Clin Oncol. 2009;27(8):1191-96. doi: 10.1200/JCO.2008.18.3285.
  56. Won C.S., Oberlies N.H., Paine M.F. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther. 2012;136(2):186-201. Doi: 10.1016/j. pharmthera.2012.08.001.
  57. Paine M.F., Hart H.L., Ludington S.S., et al. The human intestinal cytochrome P-450 «pie». Drug Metab Dispos. 2006;34(5):880-86. doi: 10.1124/dmd.105.008672.
  58. Lown K.S., Bailey D.G., Fontana R.J., et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest. 1997;99(10):2545-53. doi: 10.1172/JCI119439.
  59. Senthilkumaran S., Balamurugan N., Suresh P, Thirumalaikolundusubramanian P. Priapism, pomegranate juice, and sildenafil: Is there a connection? Urol Ann. 2012;4(2):108-10. doi: 10.4103/0974-7796.95560.
  60. Roush J. How caffeine affects drug absorption: Vista Biopharmaceutics 2015; April 2018. URL: https://www.vista-biopharmaceutics.com/about1-c1ym (access date: 28.09.2021).
  61. Дроговоз С.М., Лукьянчук В.Д., Шейман Б.С. Антидепрессанты в фокусе лекарственной токсикологии. Медицина неотложных состояний. 2014;(2):90-4.
  62. Brown C., Taniguchi G., Yip K. The monoamine oxidase inhibitor-tyramine interaction. J Clin Pharmacol. 1989;29(6):529-32. doi: 10.1002/j.1552-4604.1989.tb03376.x.
  63. Tsai H.H., Lin H.W., Pickard A.S., et al. Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: a systematic literature review.Int J Clin Pract. 2012;66(11):1056-78. doi: 10.1111/j.1742-1241.2012.03008.x.-50.
  64. Переверзев А.П., Остроумова О.Д., Ткачева О.Н., Котовская Ю.В. межлекарственным взаимодействием: акцент на желудочно-кишечные кровотечения Осложнения фармакотерапии новыми оральными антикоагулянтами, вызванные. Безопасность и риск фармакотерапии. 2019:7(2);65-71.
  65. Rehman S.U., Choi M.S., Choe K., Yoo H.H.Interactions between herbs and antidiabetics: an overview of the mechanisms, evidence, importance, and management. Arch Pharm Res. 2015;38(7):1281-98. doi: 10.1007/s12272-014-0517-z.
  66. Petric Z., Zuntar I., Putnik P, Bursac Kovacevic D. Food-Drug Interactions with Fruit Juices. Foods. 2021;10(1):33. doi: 10.3390/foods10010033.
  67. Reis A., Joaquim J. Drug interaction with milk and the relevance of acidifying/alkalizing nature of food. Clin Ther. 2015;37(Suppl. 8):E67-8.
  68. Переверзев А.П., Остроумова О.Д., Филиппова А.В. Потенциальные клинически значимые взаимодействия лекарственных средств с молоком. Профилактическая медицина. 2021;24(10):84-8. Doi: 10.17116/ profmed20212410184.
  69. Belayneh А., Molla F. The Effect of Coffee on Pharmacokinetic Properties of Drugs: A Review. Biomed Res Int. 2020;2020:7909703. doi: 10.1155/2020/7909703.
  70. Переверзев А.П., Остроумова О.Д. Взаимодействие лекарственных средств и кофе. Consilium Medicum. 2021;23(10):494-500. doi: 10.26442/20751753.2021.10.201089.
  71. Meyboodi М., Mohammadpour А.Н., Emam iS.A., Karbasforooshan H. Drug Interactions of Green Tea. J Pharm Care. 2020;8(4):196-203. doi: 10.18502/jpc.v8i4.5243.
  72. Lilja J.J., Raaska K., Neuvonen P.J. Effects of orange juice on the pharmacokinetics of atenolol. Eur J Clin Pharmacol. 2005;61(5-6):337-40.
  73. Avoid Food Drug Interactions. A Guide from the National Consumers League and U.S. Food and Drug Administration. Available at: https://curehht_.org/wp-cont.ent_/uploads/2017/11/Food_and_Drug_Interactions_FDA.pdf (access date: 26.09.2021).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах