Neutrophil extracellular traps: a new perspective on the pathogenesis of inflammatory bowel disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review is aimed to the systematization of the available information about the phenomenon of NETosis (the formation of neutrophil extracellular traps) in inflammatory bowel diseases (IBD). Neutrophil extracellular traps (NETs) serve as a physical barrier that prevents the spread of the inflammatory process, but in some cases they can exacerbate and potentiate it. It is known that an increased number of NETose networks is not specific for IBD, however, higher levels and qualitative features of proteins associated with neutrophil traps allow for a differential diagnosis both between organic and functional pathology, and within the IBD group. Excessive recruitment of neutrophils to the focus of inflammation leads to tissue damage due to the release of toxic products and reactive oxygen species. Patients with IBD are at increased risk for both primary and recurrent venous thromboembolism, as well as relatively high rates of cardiovascular morbidity. Injury to intestinal cells and intercellular junctions, leading to disruption of the epithelial barrier, is a critical feature in the pathophysiology of IBD, and disruption of the vascular endothelium leads to delayed healing of intestinal ulcers, which also aggravates the process of intestinal damage. The formation of NETs in bowel diseases is a relatively new area, which provides an opportunity to study the potential contribution of the neutrophil during this pathology. The purpose of this review is to clarify the degree of knowledge of the process of NETosis in inflammatory bowel diseases and to determine what issues require further close investigation for the development of new pathogenetically substantiated methods of diagnosis and treatment.

Full Text

Restricted Access

About the authors

Dmitry G. Novikov

Omsk State Medical University

Email: novikov.dm.omsk@gmail.com
Cand. Sci. (Med.), Associate Professor, Head of the Central Scientific Research Laboratory

P. O Pakhtusova

Omsk State Medical University

A. N Zolotov

Omsk State Medical University

M. A Livzan

Omsk State Medical University

G. R Bikbavova

Omsk State Medical University

References

  1. Dahlhamer J.M., Zammitti E.P., Ward B.W. et al. Prevalence of Inflammatory Bowel Disease Among Adults Aged >18 Years - United States, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(42):1166-69. doi: 10.15585/mmwr. mm654254
  2. Белоусова Е.А., Абдулганиева Д.И., Алексеева О.П. и др. Социально-демографическая характеристика, особенности течения и варианты лечения воспалительных заболеваний кишечника в России. Результаты двух многоцентровых исследований. Альманах клинической медицины. 2018;46(5):445-63
  3. Ливзан М.А., Макейкина М.А. Воспалительные заболевания кишечника: современные аспекты диагностики и лечения. Гастроэнтерология. Приложение к журналу Consilium Medicum. 2010;(2):60-5
  4. Carter R.I., Ungurs M.J., Mumford R.A., Stockley R.A. A-Val360: a marker of neutrophil elastase and COPD disease activity. Eur Respir J. 2012;41(1):31-38. doi: 10.1183/09031936.00197411
  5. Wright H.L., Moots R.J., Edwards S.W. The multifactorial role of neutrophils in rheumatoid arthritis. Nature Rev Rheumatol. 2014; 10(10):593-601. Doi: 10.1038/ nrrhieunm.2014.80.
  6. Biasi F., Leonarduzzi G., Oteiza PI. et al. Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets. Antioxid Redox Signal. 2013;19(14):1711-47. doi: 10.1089/ars.2012.4530
  7. Zhou G.X., Liu Z.J. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J. Dig Dis. 2017;18(9):495-503. doi: 10.1111/1751-2980.12540.
  8. Jairath V., Peyrin-Biroulet L., Zou G., et al. Responsiveness of histological disease activity indices in ulcerative colitis: a post hoc analysis using data from the TOUCHSTONE randomised controlled trial. Gut. 2019;68(7):1162-68. doi: 10.1136/gutjnl-2018-316702.
  9. Осипенко М.Ф., Ливзан М.А., Скалинская М.И. и др. Концентрация фекального кальпротектина в дифференциальной диагностике заболеваний кишечника. Терапевтический архив. 2015;87(2):30-3. Doi: 10.17116/ terarkh201587230-33. doi: 10.17116/terarkh20158 7230-33.
  10. Colombel J.F., Panaccione R., Bossuyt P., et al. Effect of tight control management on Crohn's disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet. 2017;390(10114):2779- 89. doi: 10.1016/S0140-6736(17)32 641-7.
  11. Mosli M.H., Zou G., Garg S.K., et al. C-Reactive Protein, Fecal Calprotectin, and Stool Lactoferrin for Detection of Endoscopic Activity in Symptomatic Inflammatory Bowel Disease Patients: A Systematic Review and Meta-Analysis. Am J. Gastroenterol. 2015;110(6):802-19. doi: 10.1038/ajg.2015.120.
  12. Amulic B., Cazalet C., Hayes G.L. et al. Neutrophil Function: From Mechanisms to Disease. 2012;30(1):459-89. Annu Rev Immunol. doi: 10.1146/annurev-immunol-020711-074942.
  13. De Bont C.M., Boelens W.C., Pruijn G.J.M. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol. 2019;16(1):19- 27. doi: 10.1038/s41423-018-0024-0.
  14. Takei H., Araki A., Watanabe H., et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J. Leukoc Biol. 1996;59(2):229-40. doi: 10.1002/jlb.59.2.229.
  15. Brinkmann V., Reichard U., Goosmann C., et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-35. Doi: 10.1126/ science.1092385.
  16. Drury B., Hardisty G., Gray R.D., et al. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321- 33. doi: 10.1016/j.jcmgh.2021.03.002.
  17. Metzler K.D., Fuchs T.A., Nauseef W.M., et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953-59. doi: 10.1182/blood-2010-06-290171.
  18. Papayannopoulos V., Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009;30(11):513-21. Doi: 10.1016/j. it.2009.07.011.
  19. Branzk N., Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol. 2013;35(4):513- 30. doi: 10.1007/s00281-013-0384-6.
  20. Lewis H.D., Liddle J., Coote J.E. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189-91. Doi: 10.1038/ nchernbio.!7o5.
  21. Yipp B.G., Kubes P. NETosis: how vital is it? Blood. 2013; 122(16):2784-94. doi: 10.1182/blood-2013-04-457671.
  22. Yousefi S., Stojkov D., Germic N., et al. Untangling «NETosis» from NETs. Eur J. Immunol. 2019;49(2):221-27. Doi: 10.1002/ eji.201747053.
  23. Yipp B.G., Petri B., Salina D., et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386-93. doi: 10.1038/nm.2847.
  24. Gray R.D., Hardisty G., Regan K.H., et al. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax. 2018;73(2):134-44. doi: 10.1136/thoraxjnl-2017-210134.
  25. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40. Doi: 10.1126/ scitranslmed.3005580.
  26. Huang Y., Wang H., Wang C., et al. Promotion of Hypercoagulability in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis by C5a-Induced Tissue Factor-Expressing Microparticles and Neutrophil Extracellular Traps. Arthritis Rheumatol. 2015;67(10):2780-90. Doi: 10.1002/ art.39239.
  27. Guglietta S., Chiavelli A., Zagato E., et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nature Commun. 2016;7:11037. doi: 10.1038/ncomms11037.
  28. Khalili H., Chan S.S.M., Lochhead P., Ananthakrishnan A.N. et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nature Rev Gastroenterol Hepatol. 2018;15(9):525-35. doi: 10.1038/s41575-018-0022-9.
  29. Allaire J.M., Crowley S.M., Law H.T., et al. The intestinal epithelium:central coordinator ofmucosal immunity. Trends Immunol. 2018;39(9):677-96. doi: 10.1016/j.it.2018.04.002.
  30. Вялов С.С. Нарушение проницаемости слизистой оболочки как фактор патогенеза функциональных нарушений желудочно-кишечного тракта: обоснование и возможности коррекции. Consilium Medicum. 2018;20(12):99-104. doi: 10.26442/20751753.2018.12.18 0062.
  31. Wada M., Tamura A., Takahashi N., et al. Loss of claudins 2 and 15 from mice causes defects in paracellular Na + flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;14 (2):369-80. doi: 10.1053/j.gastro.2012.10.035.
  32. Krug S.M., Schulzke J.D., Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol. 2014;36:166-76. Doi: 10.1016/j. semcdb.2014.09.002.
  33. Lin E.Y.H., Lai H.J., Cheng Y.K. et al. Neutrophil Extracellular Traps Impair Intestinal Barrier Function during Experimental Colitis. Biomedicines. 2020;8(8):275. Doi:10.3390/ biomedicines80802.
  34. Li T., Wang C., Liu Y., et al. Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. J. Crohns Colitis. 2020;14(2):240-53. Doi: 10.1093/ ecco-jcc/jjcl32.
  35. Brazil J.C., Parkos C.A. Pathobiology of neutrophil- epithelial interactions. Immunol Rev. 2016; 273(1):94-111. doi: 10.1111/imr.12446.
  36. Van Spaendonk H., Ceuleers H., Witters L., et al. Regulation of intestinal permeability: The role of proteases. World J. Gastroenterol. 2017;23(12):2106-23. doi: 10.3748/wjg.v23. i12.2106.
  37. Fukunaga S., Kuwaki K., Mitsuyama K. et al. Detection of calprotectin in inflammatory bowel disease: Fecal and serum levels and immun/bist/cbemical localization. Int J. Mol Med. 2018;41(1):107-18. Doi: 10.3892/ ijmm.2017.3244.
  38. Zhou G., Yu L., Fang L. et al. CD177+ neutrophils as functionally activated neutrophils negatively regulate IBD. Gut. 2018;67(6):1052-63. doi: 10.1136/gutjnl-2016-313535.
  39. Stroncek D.F., Shankar R.A., Noren PA. et al. Analysis of the expression of NB1 antigen using two monoclonal antibodies. Transfusion. 1996;36(2):168-74. doi: 10.1046/j.1537-2995.1996.36296181931.x.
  40. Abdgawad M., Gunnarsson L., Bengtsson A.A. et al. Elevated neutrophil membrane expression of proteinase 3 is dependent upon CD177 expression. Clin Exp Immunol. 2010; 161(1):89-97. doi: 10.1111/j.1365-2249. 2010.04154.x.
  41. Jairath V., Peyrin-Biroulet L., Zou G., et al. Responsiveness of histological disease activity indices in ulcerative colitis: a post hoc analysis using data from the TOUCHSTONE randomised controlled trial. Gut. 2019;68(7):1162-68. doi: 10.1136/gutjnl-2018-316702.
  42. Lee A., Whyte M.K., Haslett C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J. Leukoc Biol. 1993; 54(4):283-88.
  43. Ina K., Kusugami K., Hosokawa T., et al. Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in Inflammatory Bowel disease. J. Gastroenterol Hepatol. 1999;14(1):46-53. doi: 10.1046/j.1440-1746.1999. 01807.x.
  44. Ramirez-Velazquez C., Castillo E.C., Guido-Bayardo L., et al. IL-17-producing peripheral blood CD177+ neutrophils increase in allergic asthmatic subjects. Allergy Asthma Clin Immunol. 2013;9(1):23. Doi: 110.1186/17101492-9-23.
  45. Zhang D., Chen G., Manwani D., et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525(7570):528-32. Doi: 10.1038/ nature15367.
  46. Novacek G., Weltermann A., Sobala A., et al. Inflammatory bowel disease is a risk factor for recurrent venous thromboembolism. Gastroenterology. 2012;139(3):779-87. doi: 10.1053/j.gastro.2010.05.026.
  47. He Z., Si Y., Jiang T., et al. Phosphotidylserine exposure and neutrophil extracellular traps enhance procoagulant activity in patients with inflammatory bowel disease. Thromb Haemost. 2016;115(4):738-51. Doi: 10.1160/ TH15-09-0710.
  48. Senchenkova E.Y., Komoto S., Russell J., et al. Interleukin-6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis. Am J. Pathol. 2013;183(1):173-81. doi: 10.1016/j.ajpath.2013.03.014.
  49. Tolstanova G., Deng X., French S.W., et al. Early endothelial damage and increased colonic vascular permeability in the development of experimental ulcerative colitis in rats and mice. Lab Invest. 2012;92(1):9-21. Doi: 10.1038/ labinvest.2011.122.
  50. Michielan A., D'Inca R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm. 2015;2015:628157. doi: 10.1155/2015/628157.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies