Exogenous glucocorticoids and the platelet component of the hemostasis system in COVID-19


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review analyzes and systematizes the literature data on the role of glucocorticoids and the state of platelet component of hemostasis in COVID-19. Literature data on platelet component of hemostasis showed an increase in platelet activity and the development of thrombocytopenia due to exposure to the processes caused by the cytokine storm. Glucocorticoids prevent platelets metabolic activity increase, prevent the development of a cytokine storm. Despite the controversial views on glucocorticoid dexamethasone, this drug administration reduces the risks of platelet activation and subsequent thrombocytopenia.

Full Text

Restricted Access

About the authors

N. V Izmozherova

Ural State Medical University

Email: nadezhda_izm@mail.ru
Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

A. A Popov

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

I. P Antropova

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

L. I Kadnikov

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

Ya. V Livshits

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

A. D Kushtyeva

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

A. A Nikonova

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

V. M Bakhtin

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

M. A Shambatov

Ural State Medical University

Department of Pharmacology and Clinical Pharmacology Yekaterinburg, Russia

References

  1. Driggin E., Madhavan M.V., Bikdeli B., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Coll Cardiol. 2020;75(18):2352-71. Doi: 10.1016/j. jacc.2020.03.031.
  2. Гематологические показатели COVID-19 и осложнения со стороны кровеносной системы. URL: https://euat.ru/covid-19/publications/gematologicheskie_pokazateli_covid_19_i_oslozhnenija_so_storony_krovenosnoj_sistemy (дата обращения: 24.04.22.). @@Hematological parameters of COVID-19 and complications from the cardiovascular system. URL: https://euat.ru/covid-19/publications/gematologicheskie_pokazateli_covid_19_i_oslozhnenija_so_storony_krovenosnoj_sistemy (access date: 24.04.22.) (In Russ.)
  3. Lippi G., Plabani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A mata-analysis. Clin Chim Acta. 2020;506:145-48. Doi: 10.1016/j. cca.2020.03.022.
  4. Zhang H.Y, Zhang M., Yang C.X. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mhl Immunol. 2020;17(5):541-43. Doi: 10.1038/ s41423-020-0401-3.
  5. Qu R., Ling Y., Zhang Y.H., at al. Platelet-th-lymphocyte ratio is associated with prognosis in patients with chrhnavirus disease-19. J Mad Virol. 2020;92(9):1533-41. Doi: 10.1002/ jmv.25767.
  6. Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID- Акушерство, Гинекология и Репродукция. 2021;15(5):499-514. @@Makatsariya A.D., Slckh_ndhck E.V, Bitsadza V.O., at al. Thrombotic storm, hemostasis disorders and tnr_mb_i_fl_mm_ti__in COVID-19. Akusherstvh, Ginak_l_giy_i Rapr_9cktsiy_. 2221;15(5):499-514. (In Russ.). Dhi: 10.17749/2313-7347/ hb.gyn.rep.2021.247
  7. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия 15 (22.02.2022). URL: https://static-0.minzdrav.ghv.ru/system/attachments/attaches/000/059/392/опдта1/%00%92%00%9С%00%А0_С0_Ю-19_V15.pdf (дата обращения: 24.23.2222). @@Prevention, diagnosis and treatment of new d_y__aviycs disease (COVID-19). Temporary the final version of the manuscript for publication.guidelines. Version 9 (06/12/0202). URL: https://static-0.minzdrav.ghv.ru/system/attachments/attaches/ССС/С52/55С0original/%9С%9C%9С%СС_COVI9-19_%28v9%29.p9f?1623788297 (access data: 24.03.2022). (In Russ.).
  8. Ravera S., Panfhli I. Platelet aerobic metabolism: naw perspectives. J Unexplored Mad. 2219;4:7. Dhi: 10.20517/2572-8180.2019.06.
  9. Tarry N., Margolis K.G. Sar_t__argid Mechanisms Regulating the GI Tract: Experimental Evidence o_9 Therapeutic Relevance. Handb Exp Pharmacol. 2217;239:319-42. doi: 10.1027/124_2015_1Q3.
  10. Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е. и др. Тромбоциты как активаторы и регуляторы воспалительных и иммунных реакций. Часть 2. Тромбоциты как участники иммунных реакций. Медицинская иммунология. 2С19;21(1):9-2С. @@Serebryanaya N.B., Shanin S.N., F_midnav_E.E., et al. Blood platelets as activators and regulators of inflammatory o_9 immune reactions. Part 2. Thrombocytes as participants of immune reactions. Maditsinsky immunologiya. 2019;21(1):9- (In Russ.)]. doi: 10.15789/1563-06252019-1-9-20.
  11. Алексеева Л.В., Зайцев В.В., Соловьева Л.П. Физиологические механизмы реализации гемостатических функций тромбоцитов. Образовательный вестник «Сознание». 2017;19(1):1-6. @@Alekseeva L.V., Zaitsev V.V., Solov'eva L.P Physiological mechanisms of realization of hemostatic functions of platelets. Obrazovatel’nyi vestnik «Soznanie». 2017;19(1):1-6. (In Russ.).
  12. Зайчик А.Ш., Чурилов Л.П. Патофизиология: Механизмы развития болезней и синдромов. СПб., 2002. 508 с. @@Zaichik A.Sh., Churilov L.P. Pathophysiology: Mechanisms of development of diseases and syndromes. St. Petersburg, 2002. 508p. (In Russ.).
  13. Мазуров А.В. Физиология и патология тромбоцитов. М., 2011. 480с. @@Mazurov A.V. Physiology and pathology of platelets. Moscow, 2011. 480 p. (In Russ).
  14. Кузник Б.И. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме и патоголии. Чита: Экспресс-издательство, 2010. 832 c. @@Kuznik B.I. Cellular and molecular mechanisms of hemostasis system regulation in normal and pathogenic conditions. Chita: Express Publishing House, 2010. 832 p. (In Russ).
  15. Jin Y, Yang H., Ji W., et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4):372. doi: 10.3390/v12040372.
  16. Yang H, Reheman A., Chen P., et al. Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. J Thromb Haemost. 2006;4(10):2230-37. doi: 10.1111/j.1538-7836.2006.02116.x.
  17. Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. doi: 10.1186/s12985-019-1182-0.
  18. Бакунович А.В., Буланова К.Я., Лобанок Л.М. Молекулярные механизмы агрегации тромбоцитов. Журнал Белорусского государственного университета. Экология. 2017;4:40-51. @@Bakunovich A.V., Bulanova K.Ya., Lobanok L.M. Molecular mechanisms of platelet aggregation. Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiya. 2017;4:40-51. (In Russ).
  19. Li J., Han X., Knauss E.A., et al. GPCRs in thromboinflammation and hemostasis. In GPCRs. Structure, Function, and Drug Discovery. Academic Press, 2020. P 393-414. doi: 10.1016/B978-0-12-816228-6.00019-2.
  20. Lang F, Munzer P, Gawaz M., et al. Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets. Thromb Haemost. 2013;110(5):925-30. doi: 10.1160/TH13-02-0176.
  21. Солнцева Е.И., Рогозин П.Д., Скребицкий В.Г. Метаботропные глутаматные рецепторы первой группы (mGluR1/5) и нейродегенеративные заболевания. Анналы клинической и экспериментальной неврологии. 2019;13(4):54-64. @@Solntseva E.I., Rogozin P.D., Skrebitskii V.G. Group I metabotropic glutamate receptors (mGluR1/5) and neurodegenerative diseases. Annaly klinicheskoi i eksperimental'noi nevrologii. 2019;13(4):54-64. (In Russ). Doi: 10.25692/ ACEN.2019.4.8.
  22. Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е. и др. Тромбоциты как активаторы и регуляторы воспалительных и иммунных реакций. Часть Основные характеристики тромбоцитов как воспалительных клеток. Медицинская иммунология. 2018;20(6):785-96. @@Serebryanaya N.B., Shanin S.N., Fomicheva E.E., et al. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 1. Basic characteristics of platelets as inflammatory cells. Meditsinskaya immunologiya. 2018;20(6):785-96. (In Russ). doi: 10.15789/1563-0625-2018-6-785-796.
  23. Sang Y., Roest M., de Laat B., et al.Interplay between platelets and coagulation. Blood Rev. 2021;46:100733. Doi: 10.1016/j. blre.2020.100 733.
  24. Изможерова Н.В., Попов А.А., Цветков AM. и др. Острое поражение миокарда при новой коронавирусной инфекции (COVID-19). Уральский медицинский журнал. 2021;20(5):98-104. @@Izmozherova N.V., Popov A.A., Tsvetkov A.I., et al. Acute myocardial damage in new coronavirus infection (COVID-19). Ural'skii meditsinskii zhurnal. 2021;20(5):98-104. (In Russ). doi: 10.52420/2071-5943-2021-20-598-104.
  25. Klok F.A., Kruip M., van der Meer N., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-47. Doi: 10.1016/j. thromres.2020.04.013.
  26. de Roquetaillade C., Chousterman B.G., Tomasoni D., et al. A Unusual arterial thrombotic events in Covid-19patients.IntJ Cardiol. 2021;323:281-doi: 10.1016/j.ijcard.2020.08.103.
  27. Tedeschi D., Rizzi A., Biscaglia S., et al. Acute myocardial infarction and large coronary thrombosis in a patient with COVID-19. Catheter Cardiovasc Interv. 2021;97(2):272- 77. doi: 10.1002/ccd.29179.
  28. Zharikov S., Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans. 2013;41(1):118-23. doi: 10.1042/BST20120327.
  29. Caccese D., Praticd D., Ghiselli A., et al. Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation-role of arachidonic acid metabolism. Thromb Haemost. 2000; 83(3):485-90.
  30. Плосконос М.В. Экстернализация фосфати-дилсерина на поверхность мембран сперматозоидов под действием оксидативно-го стресса. Российский иммунологический журнал. 2015;9(1):156-57. @@Ploskonos M.V. Externalization of phosphatidylserine on the membrane surface spermatozoa under the influence of oxidative stress. Rossiiskii immunologicheskii zhurnal. 2015;9(1):156-57. (In Russ).
  31. Lin K.H., Chang H.C., Lu W.J., et al.Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet-activating agents. Platelets. 2009;20(8):575-81. doi: 10.3109/09537100903315704.
  32. Козлов Ю.П. Перекисное окисление липидов (ПОЛ) как основа свободно-радикальных реакций в клетках организма. Альманах мировой науки. 2016;(5)2-1:18-20. @@Kozlov Yu.P Lipid Peroxidation (POL) as the basis of free radical reactions in the cells of the body. Al'manakh mirovoi nauki. 2016;(5)2-1:18-20. (In Russ.).
  33. Минеева Н.В., Кробинец И.И., Блинов М.Н. и др. Антигены и антитела к тромбоцитам (обзор литературы). Онкогематология. 2013;8(3):60- @@Mineeva N.V, Krobinets I.I., Blinov M.N., et al. Platelet antigens and antibodies. Literature review. Onkogematologiya. 2013;8(3):60-8. (In Russ.). doi: 10.17650/1818-8346-20138-3-60-68.
  34. Maquet J., Lafaurie M., Sommet A. et al. Thrombocytopenia is independently associated with poor outcome in patients hospitalized for COVID-19. Br J Haematol. 2020;190(5):e276-e279. Doi: 10.1111/ bjh.16950.
  35. Arepally G.M., Padmanabhan A. Heparin-Induced Thrombocytopenia: A Focus on Thrombosis. Arterioscler Thromb Vasc Biol. 2021;41(1):141-7 doi: 10.1161/ATVBAHA.120.315445.
  36. Отделенов В.А., Мирзаев К.Б., Сычёв Д.А. Возможность применения дексаметазона у пациентов с COVID-19. Качественная клиническая практика. 2020;S4:96-8. @@Otdelenov V.A, Mirzaev K.B, Sychev D.A. Dexamethasone use in patients with COVID-19. Kachestvennaya Klinicheskaya Praktika. 2020;S4:96-8. (In Russ). doi: 10.37489/2588-0519-2020-S4-96-98.
  37. Борисова Е.О. Клиническая фармакология парентеральных форм глюкокортикостероидов. Лечебное дело. 2007;3:17-24. @@Borisova E.O. Clinical pharmacology of parenteral forms of glucocorticosteroids. Lechebnoe delo. 2007;3:17-24. (In Russ.).
  38. Макарова Е.В., Тюрикова Л.В., Любавина Н.А. Применение системных кортикостероидов при новой коронавирусной инфекции (с позиции международных и российских рекомендаций). Медицинский альманах. 2221;1(66):74-82. @@Makarova E.V., Tycrik_v_L.V., Lycb_vi__N.A. The use of systemic corticosteroids in new coronavirus infection (from the standpoint of international о_9 Russian recommendations). Maditsinskii al'manakh. 2221;1(66):74-82. (In Russ.).
  39. Han S.J., Choi J.H., Ko H.M., et al. Glucocorticoids prevent NF-kappaB activation by inhibiting the early release of platelet-activating factor in response to lipopolysaccharide. Eur J Immunol. 1999;29(4):1334-41. Doi: 10.1002/ (SICI)1521-4141(199904)29:04<1334::AIDIMMU1334>3.0.CO;2-0
  40. Ivanov A.I., Patel S., Kulchitsky V.A., et al. Plateletactivating factor: a previously unrecognized mediator of fever. J Physiol. 2003;553(Pt 1):221- 28. doi: 10.1113/jphysiol.2003.055616
  41. RECOVERY Collaborative Group, Horby P., Lim W.S., et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704. doi: 10.1056/NEJMoa2021436
  42. Villar J., Ferrando C., Martínez D., et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267-76. doi: 10.1016/S2213- 2600(19)30417-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies