Features of the pathogenesis of thyroid diseases in COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The novel coronavirus infection (COVID-19) pandemic has been declared by the WHO as a public health emergency of international concern around the world. The results of numerous studies have convincingly shown that the impact of SARS-CoV-2 extends not only to the respiratory system, but also to other organs and systems, which significantly affects the prognosis of the disease. This review presents research data on the role of SARS-CoV-2 in the development of thyroid diseases, including subacute thyroiditis, diffuse toxic goiter, euthyroid pathology syndrome, chronic thyroiditis with impaired thyroid function. The pathogenesis of endocrine damage in COVID-19 remains unexplored. In addition to the direct cytopathogenic effect of the virus on the thyroid tissue, great importance is attached to the development of an immunoinflammatory syndrome, impaired immune tolerance, and the effect of anticoagulant, antiviral, and anticytokine therapy. Viral damage also affects the central links of endocrine regulation, violating the mechanisms of hypothalamic-pituitary-thyroid regulation. Autoimmune disorders in genetically predisposed persons are considered as one of the main mechanisms of thyroid dysfunction. In addition, a number of thyroid diseases can worsen the course and prognosis of COVID-19. The article discusses the reasons for the development of thyroid dysfunction due to currently known mechanisms of the damaging effect of SARS-CoV-2. The analysis of the accumulated experience in managing patients with COVID-19 presented in the review open the way to develop effective recommendations for the prevention and treatment of thyroid diseases in patients infected with the SARS-CoV-2 virus.

Full Text

Restricted Access

About the authors

Oksana V. Maksim

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: ovmaks1611@mail.ru
ORCID iD: 0000-0003-0808-3325

Cand. Sci. (Med.), Teaching Assistant at the 1st Department of Therapy (Advanced Medical Education), S.M. Kirov Military Medical Academy, St. Petersburg, Russia

Russian Federation, St. Petersburg

B. V. Romashevsky

S.M. Kirov Military Medical Academy

Email: ovmaks1611@mail.ru
ORCID iD: 0000-0002-6219-5056
Russian Federation, St. Petersburg

N. Y. Demyanenco

S.M. Kirov Military Medical Academy

Email: ovmaks1611@mail.ru
ORCID iD: 0000-0002-8393-0048
Russian Federation, St. Petersburg

References

  1. Han T., Kang J., Li G., et al. Analysis of 2019-nCoV receptor АПФ-2 expression in diferent tissues and its signifcance study. Ann Transl Med. 2020;8: 1077–77.
  2. Болевич C.Б., Болевич С.С. Комплексный механизм развития СOVID-19. Сеченовский вестник. 2020;11(2):50–61. [Bolevich C.B., Bolevich S.S. Comprehensive mechanism for the development of COVID-19. Sechenovskii vestnik. 2020;11(2):50–61. (In Russ.)]. doi: 10.47093/2218-7332.2020.11.2.50-61.
  3. Hu C.A., Murphy I., Klimaj S., et al. SARS-CoV-2, Inflammatory Apoptosis, and Cytokine Storm Syndrom. The open COVID J. 2021;1:22–31. doi: 10.2174/2666958702101010022.
  4. Geslot A., Chansonb P., Carona P. Covid-19, the thyroid and the pituitary – The real state of play. Ann d’Endocrinol. 2022;83(2):103–8. doi: 10.1016/j.ando.2021.12.00.
  5. Lisco G., De Tullio A., Stragapede A., et al. COVID-19 and the Endocrine System: A Comprehensive Review on the Theme. J Clin Med. 2021;10:2920. doi: 10.3390/jcm1013292.
  6. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. Respir Med. 2020;8(4):420–22. doi: 10.1016/S2213-2600 (20) 30076-X.
  7. Young M., Crook H., Scott J., et al. Covid-19: virology, variants, and vaccines. BMJ Med. 2022;1:e000040. doi: 10.1136/bmjmed-2021-000040.
  8. Болдырева М.Н. Вирус SARS-CoV-2 и другие эпидемические коронавирусы: патогенетические и генетические факторы развития инфекций. Иммунология. 2020;41(3):197–205. [Boldyreva M.N. SARS-CoV-2 virus and other epidemic coronaviruses: pathogenetic and genetic factors in the development of infections. Immunologiya. 2020;41(3):197–205. (In Russ.)]. doi: 10.33029/0206-4952-2020-41-3-197-205.
  9. Салухов В.В., Крюков Е.В., Чугунов А.А. и др. Роль и место глюкокортико-стероидов в терапии пневмоний, вызванных COVID-19, без гипоксемии. Медицинский совет. 2021;12:162–72. [Salukhov V.V., Kryukov E.V., Chugunov A.A. et ai. Role and place of glucocorticosteroids in the treatment of pneumonia caused by COVID-19 without hypoxemia. Meditsinskii sovet. 2021;12:162–72. (In Russ.)]. doi: 10.21518/2079-701X-2021-12-162-172.
  10. Вахлевский В.В., Тыренко В.В., Свинцицкая И.С., Крюков Е.В. Особенности течения ревматических заболеваний на фоне новой коронавирусной инфекции. Русский медицинский журнал. Медицинское обозрение. 2021;5(2):84–8. [VakhlevskyV.V., Tyrenko V.V., Svintsitskaya I.S., Kryukov E.V. Features of the course of rheumatic diseases against the background of a new coronavirus infection. Russkii meditsinskii zhurnal. Meditsinskoe obozrenie. 2021;5(2):84–8. (In Russ.)]. doi: 10.32364/2587-6821-2021-5-2-84-88.
  11. Козлов В.К. Цитокинотерапия: патогенетическая направленность и клиническая эффективность при инфекционных заболеваниях: руководство для врачей. СПб., 2010. [Kozlov V.K. Cytokine therapy: pathogenetic orientation and clinical efficacy in infectious diseases: a guide for physicians. SPb., 2010. (In Russ.)].
  12. McGonagle D. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537. Doi: 10.1016/ j.autrev.2020.102537.
  13. Ruan Q., Yang K., Wang W., et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intens Care Med. 2020;46(5):846–48. doi: 10.1007/s00134-020-05991-x.
  14. Zhang Y., Xiao M., Zhang S., et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382:e38. doi: 10.1056/NEJMc2007575.
  15. Голота А.С., Камилова Т.А., Шнейдер О.В. и др. Патогенез начальных стадий тяжелой формы COVID-19. Клиническая практика. 2021;12(2):83–102. [Golota A.S., Kamilova T.A., Shneider O.V. Pathogenesis of the initial stages of a severe form of COVID-19. Klinicheskaya praktika. 2021;12(2):83–102. (In Russ.)]. doi: 10.17816/clinpract71351.
  16. Gupta S., Kaplan M.J. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol. 2016;12(7):402–13.
  17. Zhou Y., Han T., Chen J., et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin Trans Sci. 2020;13(6):1077–86. doi: 10.1111/cts.12805.
  18. Трошина Е.А., Юкина М.Ю., Нуралиева Н.Ф., Мокрышева Н.Г. Роль генов системы HLA: от аутоиммунных заболеваний до COVID-19. Проблемы эндокринологии. 2020;66(4):9–15. [Troshina E.A., Yukina M.Yu., Nuralieva N.F., Mokrysheva N.G. The role of HLA system genes: from autoimmune diseases to COVID-19. Problemy endokrinologii. 2020;66(4):9–15. (In Russ.)]. doi: 10.14341/probl12470.
  19. Трошина Е.А. Иммуноэндокринология - вопросы и вызовы сегодняшнего дня. Проблемы эндокринологии. 2020;66(4):4–8. [Troshina E. AImmunoendocrinology – issues and challenges of today. Problemy endokrinologii. 2020;66(4):4–8. (In Russ.)]. doi: 10.14341/probl12615.
  20. Inaba H., Aizawa T. Coronavirus Disease 2019 and the Thyroid - Progress and Perspectives. Front Endocrinol. 2021;12:708333. doi: 10.3389/fendo.2021.708333.
  21. Tavasolian F., Rashidi M., Hatam G.R., et al. HLA, Immune Response, and Susceptibility to COVID-19. Front Immunol. 2021;11:601886. doi: 10.3389/fimmu.2020.601886.
  22. Lauer S.A., Grantz K.H., Bi Q., et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020;172(9):577–82. doi: 10.7326/M20-0504.
  23. Zalpoor H., Akbari A., Samei A., et al. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell Mol Biol Lett. 2022;27:10. doi: 10.1186/s11658-022-00311-1.
  24. Frara S., Allora A., Castellino L., et al. COVID-19 and the pituitary. Pituitary. 2021;24:465–81. doi: 10.1007/s11102-021-01148-1.
  25. Chu H., Chan J.F-W., Wang Y., et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Clin Infect Dis. 2020;71(6):1400–409. doi: 10.1093/cid/ciaa410.
  26. Wei L., Sun S., Zhang J., et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010;88:723–30. doi: 10.1139/O10-022.
  27. Naguib R. Potential relationships between COVID-19 and the thyroid gland: an update. J Internat Med Res. 2022;50(2):1–16. doi: 10.1177/03000605221082898.
  28. Lisco G., De Tullio A., Jirillo E., et al. Thyroid and COVID 19: a review on pathophysiological, clinical and organizational aspects. J Endocrinol Invest. 2021;44:1801–14. doi: 10.1007/s40618-021-01554-z.
  29. Chen W., Tian Y., Li Z., et al. Potential Interaction Between SARS-CoV-2 and Thyroid: A Review. Endocrinol. 2021;162:bqab004. doi: 10.1210/endocr/bqab004.
  30. Михайлова А.А., Лагутина Д.И., Головатюк К.А. и др. Уровень ТТГ у больных COVID-19 средней и тяжёлой степени тяжести в остром периоде заболевания. Медицинский вестник Юга России. 2022;13(1):72–9. [Mikhailova A.A., Lagutina D.I., Golovatyuk K.A. et al. TSH level in moderate and severe COVID-19 patients in the acute period of the disease. Meditsinskii vestnik Yuga Rossii. 2022;13(1):72–9. (In Russ.)]. doi: 10.21886/2219-8075-2022-13-1-72-79.
  31. Gorini F., Bianchi F., Iervasi G. Covid-19 and thyroid: Progress and prospects. Int J Environ Res Public Health. 2020;17:6630. doi: 10.3390/ijerph17186630.
  32. Rotondi M., Coperchini F., Ricci G., et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest. 2020;6:1–6. doi: 10.1007/s40618-020-01436-w.
  33. Klein J.R. The immune system as a regulator of thyroid hormone activity. Exp Biol Med. (Maywood). 2006;231(3):229–36. doi: 10.1177/153537020623100301.
  34. Lania A., Sandri M.T., Cellini M., et al. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur J Endocrinol. 2020;183:381–87. doi: 10.1530/EJE-20-0335.
  35. Scappaticcio L., Pitoia F., Esposito K., et al. Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord. 2020;22:1–13.
  36. Halpert G., Shoenfeld Y. Sars-CoV-2, the Autoimmune Virus. Autoimmun Rev. 2020;19(12):102695. doi: 10.1016/j.autrev.2020.102695.
  37. Buijsers B., Yanginlar C., Maciej-Hulme M.L., et al. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMed. 2020;59:102969.
  38. Arao T., Okada Y., Torimoto K., et al. Prednisolone Dosing Regimen for Treatment of Subacute Thyroiditis. J UOEH. 2015;37:103–10. doi: 10.7888/juoeh.37.103.
  39. Campi I., Bulgarelli I., Dubini A., et al. The Spectrum of Thyroid Function Tests During Hospitalization for SARS COV-2 Infection. Eur J Endocrinol. 2021;184(5):699–709. doi: 10.1530/EJE-20-1391.
  40. Nasser M., Soma W. Thyroid Dysfunction in COVID-19. J Endocrinol Thyroid Res. 2020;5(4):555669. doi: 10.19080/JETR.2020.05.555669.
  41. Urhan E., Karaca Z., Kara C.S., et al. The potential impact of COVID-19 on thyroid gland volumes among COVID-19 survivors. Endocrine. 2022;76:635–41. doi: 10.1007/s12020-022-03019-6.
  42. Campi I., Bulgarelli I., Dubini A., et al. The Spectrum of Thyroid Function Tests During Hospitalization for SARS COV-2 Infection. Eur J Endocrinol. 2021;184(5):699–709. doi: 10.1530/EJE-20-1391.
  43. Czarnywojtek A., Ochmanska A., Zgorzalewicz-Stachowiak M., et al. Influence of SARS-CoV-2 infection on thyroid gland function: The current knowledge. Adv Clin Exp Med. 2021;30(7):747–55. doi: 10.17219/acem/139622.
  44. Chen M., Zhou W., Xu W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid. 2021;31:8–11. doi: 10.1089/thy.2020.0363.
  45. Muller I., Cannavaro D., Dazzi D., et al. SARS-CoV-2-related atypical thyroiditis. Lancet. Diab Endocrinol. 2020;8:739–41. doi: 10.1016/S2213-8587(20)30266-7.
  46. Popescu M., Ghemigian A., Vasile C.M., et al. The New Entity of Subacute Thyroiditis amid the COVID-19 Pandemic: From Infection to Vaccine. Diagnostics 2022;12:960. doi: 10.3390/diagnostics12040960.
  47. Kumari K., Chainy G.B.N., Subudhi U. Prospective role of thyroid disorders in monitoring COVID-19 pandemic. Heliyon. 2020;6(12):e05712. doi: 10.1016/j.heliyon.2020.e05712.
  48. Stasiak M., Tymoniuk B., Stasiak B., et al. The Risk of Recurrence of Subacute Thyroiditis Is HLA-Dependent. Int J Mol Sci. 2019;20:1089. doi: 10.3390/ijms20051089.
  49. Ganesh B.B., Bhattacharya P., Gopisetty A., Prabhakar B.S. Role of Cytokines in the Pathogenesis and Suppression of Thyroid Autoimmunity. J Interferon Cytokine Res. 2011;31(10):721–31. doi: 10.1089/jir.2011.0049.
  50. Алташина М.В., Панфилова Е.А., Терехова М.А., Трошина Е.А. Синдром тиреотоксикоза аутоиммунного генеза (клинический случай и обзор литературы). Consilium Medicum. 2018;20(4):52–8. [Altashina M.V., Panfilova E.A., Terekhova M.A., Troshina E.A. Thyrotoxicosis syndrome of autoimmune genesis (clinical case and literature review). Consilium Medicum. 2018;20(4):52–8. (In Russ.)]. doi: 10.26442/2075-1753_2018.4.52-58.
  51. McLachlan S.M., Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocrine Rev. 2014;35(1):59–105. doi: 10.1210/er.2013-1055.
  52. Lee H.J., Li C.W., Hammerstad S.S., et al. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun. 2015;64:82–90. doi: 10.1016/j.jaut.2015.07.009.
  53. Tomer Y., Davies T.F. Searching for the Autoimmune Thyroid Disease Susceptibility Genes: From Gene Mapping to Gene Function. Endocr Rev. 2003;24:694–717. doi: 10.1210/er.2002-0030.
  54. Bahcecioglu A.B., Karahan Z.C., Aydogan B.J., et al. Subacute thyroiditis during the COVID 19 pandemic: a prospective Study. J Endocrinol Invest. 2022;45:865–74. doi: 10.1007/s40618-021-01718-x.
  55. Pyzik A., Grywalska E., Matyjaszek-Matuszek B., et al. Immune disorders in Hashimoto’s thyroiditis: what do we know so far? J Immunol Res. 2015;2015:979167. doi: 10.1155/2015/979167.
  56. Здор В.В., Маркелова Е.В., Гельцер Б.И. Новые участники нарушения толерантности к антигенам щитовидной железы: к концепции иммунопатогенеза аутоиммунных заболеваний щитовидной железы (обзор литературы). Медицинская иммунология. 2016;18(3):209–20. [Zdor V.V., Markelova E.V., Gel’tser B.I. New participants in the violation of tolerance to thyroid antigens: to the concept of immunopathogenesis of autoimmune thyroid diseases (literature review). Meditsinskaya immunologiya. 2016;18(3):209–20. (In Russ.)]. doi: 10.15789/1563-0625-2016-3-209-220.
  57. Шагарова С.Г. К проблеме иммунопатогенеза аутоиммунных заболеваний щитовидной железы. Сибирский медицинский журнал. 2011;1:42–5. [Shagarova S.G. On the problem of immunopathogenesis of autoimmune thyroid diseases. Sibirskii meditsinskii zhurnal. 2011;1:42–5. (In Russ.)].
  58. Lui D.T.W., Lee C.H., Chow W.S., et al. Insights from a prospective follow-up of thyroid function and autoimmunity among COVID-19 survivors. Endocrinol. Metab. (Seoul.) 2021;36(3):582–89. doi: 10.3803/EnM.2021.983.
  59. Montesinos M.D.M., Pellizas C.G. Thyroid Hormone Action on Innate Immunity. Front. Endocrinol. (Lausanne). 2019;10:350. doi: 10.3389/fendo.2019.00350.
  60. Burekovic A., Halilovic D., Sahbaz A. Hypothyroidism and subclinical hypothyroidism as a consequence of COVID-19 infection. Med Arch. 2022;76(1):12–6. doi: 10.5455/medarh.2022.76.12-16.
  61. Weetman A.P. Graves’ disease. N Engl J Med. 2000;343(17):1236–48. doi: 10.1056/NEJM200010263431707.
  62. Маркелова Е.В., Лазанович В.В. Аутоантитела и цитокиновый профиль у пациентов с болезнью Грейвса-Базедова и их динамика на фоне терапии тионамидами. Медицинская иммунология. 2008;10(2–3):245–50. [Markelova E.V., Lazanovich V.V. Autoantibodies and cytokine profile in patients with Graves-Basedow’s disease and their dynamics during thionamide therapy. Meditsinskaya immunologiya. 2008;10(2–3):245–50. (In Russ.)].
  63. Lui D.T.W., Lee C.H., Chow W.S., et al. Thyroid Dysfunction in Relation to Immune Profile, Disease Status, and Outcome in 191 Patients with COVID-19. J Clin Endocrinol Metab. 2021;106:e926–35. doi: 10.1210/clinem/dgaa813.
  64. Guven M., Gultekin H. The prognostic impact of thyroid disorders on the clinical severity of COVID-19: Results of singlecentre pandemic hospital. Int J Clin Pract. 2021;75:e14129. Doi: 10.1111/ ijcp.14129.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Proposed pathogenesis of thyroid dysfunction in COVID-19

Download (162KB)
3. Fig. 2. Mechanism of thyroid injury in COVID-19 (adapted from [28])

Download (265KB)
4. Fig. 3. Immunological changes leading to thyroid dysfunction in COVID-19 (adapted from [20])

Download (303KB)
5. Fig. 4. Dynamics of the appearance of thyroid diseases in COVID-19 (adapted from [20])

Download (212KB)

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies