Metabolically associated fatty liver disease: the role of ademetionine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In early 2020, an international expert group proposed changing the nomenclature of nonalcoholic fatty liver disease (NAFLD) to metabolically associated fatty liver disease (MAFLD) to better reflect the basic pathophysiology of NAFLD as a metabolic disease and to move toward «positive» diagnostic criteria rather than exclusion criteria. Two years later, the definition of MAFLD is increasingly being used in the medical literature, and recent studies have shown that the global prevalence of MAFLD is higher than NAFLD and that patients with MAFLD have more metabolic comorbidities compared with patients with NAFLD, and new evidence also suggests that all-cause and cardiovascular mortality may be higher in MAFLD compared with NAFLD. In this context, this review discusses the criteria for the diagnosis of MAFLD, the specific pathophysiology of the disease, and the prospects for therapeutic strategies, including the use of ademetionine.

Full Text

Restricted Access

About the authors

Olga A. Polyakova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: docpolyakova.olga@gmail.com
ORCID iD: 0000-0003-0491-8823
SPIN-code: 5104-9117

Cand. Sci. (Med.), Assistant of the Department of Therapy and Polymorbid Pathology n.a. Academician M.S. Vovsi

Russian Federation, Moscow

L. D. Kozgunova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: docpolyakova.olga@gmail.com
ORCID iD: 0000-0001-7234-9525
Russian Federation, Moscow

O. D. Ostroumova

Russian Medical Academy of Continuous Professional Education

Email: docpolyakova.olga@gmail.com
ORCID iD: 0000-0002-0795-8225
SPIN-code: 3910-6585
Russian Federation, Moscow

References

  1. Eslam M., Newsome P.N., Sarin S.K., et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73(1):202–9. doi: 10.1016/j.jhep.2020.03.039.
  2. Eslam M., Sanyal A.J., George J. International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999-2014.e1. doi: 10.1053/j.gastro.2019.11.312.
  3. Eslam M., Sarin S.K., Wong V.W., et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020;14(6):889–19. doi: 10.1007/s12072-020-10094-2.
  4. Burt A.D., Lackner C., Tiniakos D.G. Diagnosis and Assessment of NAFLD: Definitions and Histopathological Classification. Semin Liver Dis. 2015;35(3):207–20. doi: 10.1055/s-0035-1562942.
  5. Mendez-Sanchez N., Bugianesi E., Gish R.G., et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol. 2022;7(5):388–90. doi: 10.1016/S2468-1253(22)00062-0.
  6. Alharthi J., Gastaldelli A., Cua I.H. et al. Metabolic dysfunction-associated fatty liver disease: a year in review. Curr Opin Gastroenterol. 2022;38(3):251–60. doi: 10.1097/MOG.0000000000000823.
  7. Eslam M., Ahmed A., Despres J.P., et al. Incorporating fatty liver disease in multidisciplinary care and novel clinical trial designs for patients with metabolic diseases. Lancet Gastroenterol Hepatol. 2021;6(9):743–53. doi: 10.1016/S2468-1253(21)00132-1.
  8. Tokita Y., Maejima Y., Shimomura K., et al. Non-alcoholic Fatty Liver Disease Is a Risk Factor for Type 2 Diabetes in Middle-aged Japanese Men and Women. Intern Med. 2017;56(7):763–71. doi: 10.2169/internalmedicine.56.7115
  9. Armstrong M.J., Adams L.A., Canbay A., Syn W.K. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014;59(3):1174–97. doi: 10.1002/hep.26717/
  10. Söderberg C, Stal P, Askling J, et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51(2):595-602. doi: 10.1002/hep.23314
  11. Ekstedt M., Hagstrom H., Nasr P., et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61(5):1547–54. doi: 10.1002/hep.27368
  12. Liu Q., Zhao G., Li Q., et al. A comparison of NAFLD and MAFLD diagnostic criteria in contemporary urban healthy adults in China: a cross-sectional study. BMC Gastroenterol. 2022;22(1):471. doi: 10.1186/s12876-022-02576-4.
  13. Grabherr F., Grander C., Effenberger M., et al. MAFLD: what 2 years of the redefinition of fatty liver disease has taught us. Ther Adv Endocrinol Metab. 2022;13:20420188221139101. doi: 10.1177/20420188221139101.
  14. Sarin S.K., Eslam M., Fan J.G., et al. MAFLD, patient-centred care, and APASL. Hepatol Int. 2022;16(5):1032–34. doi: 10.1007/s12072-022-10408-6.
  15. Yamamura S., Eslam M., Kawaguchi T., et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020;40(12):3018–30. doi: 10.1111/liv.14675.
  16. Tilg H., Effenberger M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol. 2020;17(7):387-388. doi: 10.1038/s41575-020-0316-6
  17. Lim G.E.H., Tang A., Ng C.H., et al. An Observational Data Meta-analysis on the Differences in Prevalence and Risk Factors Between MAFLD vs NAFLD. Clin Gastroenterol Hepatol. 2021;S1542-3565(21)01276–73. doi: 10.1016/j.cgh.2021.11.038.
  18. Nguyen V.H., Le M.H., Cheung R.C., Nguyen M.H. Differential Clinical Characteristics and Mortality Outcomes in Persons With NAFLD and/or MAFLD. Clin Gastroenterol Hepatol. 2021;19(10):2172–81.e6. doi: 10.1016/j.cgh.2021.05.029.
  19. Kim D, Konyn P, Sandhu KK, et al. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J Hepatol. 2021;75(6):1284–91. doi: 10.1016/j.jhep.2021.07.035.
  20. Lee H., Lee Y.H., Kim S.U., Kim H.C. Metabolic Dysfunction-Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A Nationwide Cohort Study. Clin Gastroenterol Hepatol. 2021;19(10):2138–47.e10. doi: 10.1016/j.cgh.2020.12.022.
  21. Liang Y., Chen H., Liu Y., et al. Association of MAFLD With Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J Clin Endocrinol Metab. 2022;107(1):88–97. doi: 10.1210/clinem/dgab641
  22. Yoneda M., Yamamoto T., Honda Y., et al. Risk of cardiovascular disease in patients with fatty liver disease as defined from the metabolic dysfunction associated fatty liver disease or nonalcoholic fatty liver disease point of view: a retrospective nationwide claims database study in Japan. J Gastroenterol. 2021;56(11):1022–32. doi: 10.1007/s00535-021-01828-6.
  23. Маев И.В., Андреев Д.Н., Кучерявый Ю.А. Метаболически ассоциированная жировая болезнь печени – заболевание XXI века. Consilium Medicum. 2022;24(5):15–22. [Maev I.V., Andreev D.N, Kucheryavyy Yu.A. Metabolically associated fatty liver disease – a disease of the 21st century. Consilium Medicum. 2022;24(5):15–22. (In Russ.)]. doi: 10.26442/20751753.2022.5.201532.
  24. Badmus O.O., Hillhouse S.A., Anderson C.D., et al. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond). 2022;136(18):1347–66. doi: 10.1042/CS20220572.
  25. Heeren J., Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab. 2021;50:101238. doi: 10.1016/j.molmet.2021.101238.
  26. Nikolic I, Leiva M, Sabio G. The role of stress kinases in metabolic disease. Nat Rev Endocrinol. 2020;16(12):697–716. doi: 10.1038/s41574-020-00418-5.
  27. Leiva M., Matesanz N., Pulgarin-Alfaro M., et al. Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Front Endocrinol (Lausanne). 2020;11:572089. doi: 10.3389/fendo.2020.572089.
  28. Rinaldi L., Pafundi P.C., Galiero R., et al. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants (Basel). 2021;10(2):270. doi: 10.3390/antiox10020270.
  29. Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75(18):3313-3327. doi: 10.1007/s00018-018-2860-6
  30. Newberry E.P., Xie Y., Kennedy S.M., et al. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology. 2006;44(5):1191–205. doi: 10.1002/hep.21369.
  31. Mukai T., Egawa M., Takeuchi T., et al. Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease. FEBS Open Bio. 2017;7(7):1009–16. doi: 10.1002/2211-5463.12240.
  32. Lu Y.C., Chang C.C., Wang C.P., et al. Circulating fatty acid-binding protein 1 (FABP1) and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Int J Med Sci. 2020;17(2):182–90. doi: 10.7150/ijms.40417.
  33. Auinger A., Valenti L., Pfeuffer M., et al. A promoter polymorphism in the liver-specific fatty acid transport protein 5 is associated with features of the metabolic syndrome and steatosis. Horm Metab Res. 2010;42(12):854–59. doi: 10.1055/s-0030-1267186.
  34. Buttet M., Poirier H., Traynard V., et al. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model. PLoS One. 2016;11(1):e0145626. doi: 10.1371/journal.pone.0145626.
  35. Miquilena-Colina M.E., Lima-Cabello E., Sanchez-Campos S., et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60(10):1394–402. doi: 10.1136/gut.2010.222844.
  36. Rada P., Gonzalez-Rodriguez A., Garcia-Monzon C., Valverde A.M. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 2020;11(9):802. doi: 10.1038/s41419-020-03003-w.
  37. Sanders F.W., Griffin J.L. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. 2016;91(2):452–68. doi: 10.1111/brv.12178.
  38. Joshi-Barve S., Barve S.S., Amancherla K., et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 2007;46(3):823–30. doi: 10.1002/hep.21752.
  39. Knebel B., Haas J., Hartwig S., et al. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One. 2012;7(2):e31812. doi: 10.1371/journal.pone.0031812.
  40. Iizuka K., Takao K., Yabe D. ChREBP-Mediated Regulation of Lipid Metabolism: Involvement of the Gut Microbiota, Liver, and Adipose Tissue. Front Endocrinol (Lausanne). 2020;11:587189. doi: 10.3389/fendo.2020.587189.
  41. Moreno-Fernandez M.E., Giles D.A., Stankiewicz T.E., et al. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight. 2018;3(6):e93626. doi: 10.1172/jci.insight.93626.
  42. Hinds T.D. Jr, Hosick P.A., Chen S, et al. Mice with hyperbilirubinemia due to Gilbert’s syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am J Physiol Endocrinol Metab. 2017;312(4):E244-E252. doi: 10.1152/ajpendo.00396.2016.
  43. Francque S., Verrijken A., Caron S., et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol. 2015;63(1):164–73. doi: 10.1016/j.jhep.2015.02.019.
  44. Hinds T.D. Jr, Creeden J.F., Gordon D.M., et al. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol. 2020;11:594574. doi: 10.3389/fphar.2020.594574.
  45. Charlton M., Sreekumar R., Rasmussen D., et al. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology. 2002;35(4):898–904. doi: 10.1053/jhep.2002.32527.
  46. Mendez-Sanchez N., Arrese M., Zamora-Valdes D., Uribe M. Current concepts in the pathogenesis of nonalcoholic fatty liver disease. Liver Int. 2007;27(4):423–33. doi: 10.1111/j.1478-3231.2007.01483.x.
  47. Киселева Е.В., Демидова Т.Ю. Неалкогольная жировая болезнь печени и сахарный диабет 2 типа: проблема сопряженности и этапности развития. Ожирение и метаболизм. 2021;18(3):313–19. [Kiseleva E.V., Demidova T.Y. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the problem of conjunction and phasing. Ozhirenie i metabolizm=Obesity and metabolism. 2021;18(3):313–19. (In Russ.)]. doi: 10.14341/omet12758.
  48. Newton J.L., Jones D.E., Henderson E., et al. Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut. 2008;57(6):807–13. doi: 10.1136/gut.2007.139303.
  49. Wang C.H., Liu H.M., Chang Z.Y., et al. Losartan Prevents Hepatic Steatosis and Macrophage Polarization by Inhibiting HIF-1α in a Murine Model of NAFLD. Int J Mol Sci. 2021;22(15):7841. doi: 10.3390/ijms22157841.
  50. Kim M.Y., Cho M.Y., Baik S.K., et al. Beneficial effects of candesartan, an angiotensin-blocking agent, on compensated alcoholic liver fibrosis - a randomized open-label controlled study. Liver Int. 2012;32(6):977–87. doi: 10.1111/j.1478–3231.2012.02774.x
  51. Неалкогольная жировая болезнь печени у взрослых. Клинические рекомендации, утвержденные Минздравом России (2022 г.). [Nonalcoholic fatty liver disease in adults. Clinical guidelines approved by the Ministry of Health of Russia (2022). (In Russ.)]. Available at: https://cr.minzdrav.gov.ru/recomend/748_1 (13.01.2022). (In Russ.)].
  52. Полякова О.А., Остроумова О.Д., Ковалева Г.П., Павлеева Е.Е. Коморбидность неалкогольной жировой болезни печени и сердечно-сосудистых заболеваний: фокус на адеметионин и урсодезоксихолевую кислоту. Медицинский алфавит. 2021;1(29):13-20. [Polyakova O.A., Ostroumova O.D., Kovaleva G.P., Pavleeva E.E. Comorbidity of non-alcoholic fatty liver disease and cardiovascular disease: focus on ademetionine and ursodeoxycholic acid. Meditsinskii alfavit. 2021;1(29):13–20. (In Russ.)]. doi: 10.33667/2078-5631-2021-29-13-20.
  53. Li Z., Agellon L.B., Allen T.M., et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3(5):321–31. doi: 10.1016/j.cmet.2006.03.007.
  54. Anstee Q.M., Day C.P. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol. 2012;57(5):1097–09. doi: 10.1016/j.jhep.2012.04.041.
  55. Mato J.M., Lu S.C.. Role of S-adenosyl-L-methionine in liver health and injury. Hepatology. 2007;45(5):1306–12. doi: 10.1002/hep.21650.
  56. Vergani L, Baldini F, Khalil M, et al. New Perspectives of S-Adenosylmethionine (SAMe) Applications to Attenuate Fatty Acid-Induced Steatosis and Oxidative Stress in Hepatic and Endothelial Cells. Molecules. 2020;25(18):4237. doi: 10.3390/molecules25184237
  57. Vendemiale G., Altomare E., Trizio T, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand J Gastroenterol. 1989;24(4):407–15. doi: 10.3109/00365528909093067.
  58. Virukalpattigopalratnam M.P., Singh T., Ravishankar A.C. Heptral (ademetionine) in patients with intrahepatic cholestasis in chronic liver disease due to non-alcoholic liver disease: results of a multicentre observational study in India. J Indian Med Assoc. 2013;111(12):856–59.
  59. Барановский А.Ю., Райхельсон К.Л., Марчен-ко Н.В. Применение S-аденозилметионина (Гептрала®) в терапии больных неалкогольным стеатогепатитом. Клинические перспективы гастроэнтерологии, гепатологии. 2010;1:3–10. [Baranovsky A.Yu., Raykhelson K.L., Marchenko N.V. Application of S-adenosylmethionine (Heptral®) in treatment of patients with non-alcoholic steatohepatitis. Klinicheskie perspektivy gastroenterologii, gepatologii. 2010;1:3–10. (In Russ.)].
  60. Antoniv A., Antofiychuk N., Danylyshina T., et al. Clinical efficacy of S-adenosylmethionine in patients with non-alcoholic steatohepatitis and chronic kidney disease I-II stage. Georgian Med News. 2017;(273):31–6.
  61. Baiming L. Observation of the efficacy of S-adenosylmethionine in the treatment of non-alcoholic fatty liver disease. Chinese Hepatology. 2011;16(5):350–51.
  62. Guo T., Chang L., Xiao Y., Liu Q. S-adenosyl-L-methionine for the treatment of chronic liver disease: a systematic review and meta-analysis. PLoS One. 2015;10(3):1–17. doi: 10.1371/journal.pone.0122124.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies