The role of collagen gene polymorphisms in the development of cardiovascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Collagen fibers are the main component of most types of connective tissue; collagen is the most abundant protein in the human body. The most common types of collagen that provide elasticity and stiffness of the tissue under regular mechanical stress are collagen types I and III. Congenital or acquired changes in collagen are the substrate basis for changes in the vascular wall.

Objective. Characteristics of the current understanding of the role of collagen gene polymorphisms in the development of cardiovascular diseases.

Methods. Articles were selected in PubMed, Google Scholar search engines from February to May 2022. The following keywords were used for the search: polymorphism, collagen, vascular diseases, single nucleotide polymorphism (SNP).

Results. Single nucleotide polymorphisms rs2621215 in the promoter regions of the 7q22.1 genes can affect the collagen expression level, increasing the risk of developing vascular aneurysms. Polymorphism of the α-1-chain type I collagen gene COL1A1 (17q21.31 – q22) leads to the development of cardiovascular diseases associated with an increase in arterial stiffness. Increased vascular stiffness is associated with endothelial dysfunction, increased activity of angiotensin-converting enzyme (ACE). This leads to increased synthesis of angiotensin II and activation of the renin-angiotensin-aldosterone system (RAAS). The endothelial dysfunction may result not only in a decrease in NO production, but also in its accelerated degradation and vascular remodeling. Drugs that increase NO formation, such as nebivolol, can reduce the stiffness of large arteries, reduce central blood pressure, and also have a beneficial effect on the elastic properties of the arteries, which in turn can lead to a decrease in cardiovascular risk.

The tissue effects of ACE inhibitors restore endothelial function, inhibit the proliferation and migration of smooth muscle cells, neutrophils and mononuclear cells, and reduce free radical oxidation. The effect on endothelial dysfunction is probably related to the restoration of bradykinin metabolism. The COL1A2 gene encodes pro-alpha-2 collagen type I chains, whose triple helix also consists of two alpha-1 chains and one alpha-2 chain. Mutations in this gene are associated with cardiovascular type Ehlers-Danlos syndrome. Mutations in the COL3A1 gene cause the vascular type Ehlers–Danlos syndrome. With this type, patients often die suddenly due to rupture of large arteries, vascular aneurysms as a consequence of a decrease in the normal type III collagen level in the vessel wall. Polymorphism of the COL3A1 gene can affect the strength and extensibility of collagen fibers and thereby change the quality of connective tissue.

Conclusion. Violation of collagen synthesis and the structure and mechanical properties of the vascular wall can be the main cause of vascular accidents and occur regardless of the presence of traditional risk factors.

Full Text

Restricted Access

About the authors

Nadezhda V. Izmozherova

Ural State Medical University

Author for correspondence.
Email: nadezhda_izm@mail.ru

Dr. Sci. (Med.), Associate Professor, Head of the Department of Pharmacology and Clinical Pharmacology, Chief External Expert in Clinical Pharmacology of the Ministry of Health of the Sverdlovsk Region

Russian Federation, Yekaterinburg

A. A. Popov

Ural State Medical University

Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0001-6216-2468
Russian Federation, Yekaterinburg

M. A. Shambatov

Ural State Medical University

Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0001-7312-415X
Russian Federation, Yekaterinburg

E. M. Tarasova

Ural State Medical University

Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0001-9068-0924
Russian Federation, Yekaterinburg

V. M. Bakhtin

Ural State Medical University

Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0001-7907-2629
Russian Federation, Yekaterinburg

L. I. Kadnikov

Ural State Medical University

Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0002-2623-2657
Russian Federation, Yekaterinburg

References

  1. Kwak H.B. Aging, exercise, and extracellular matrix in the heart. J Exerc Rehabil. 2013;9(3):338–47. doi: 10.12965/jer.130049.
  2. Wang Z., Moult J. SNPs, protein structure, and disease. Hum Mutat. 2001;17(4):263–70. doi: 10.1002/humu.22.
  3. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978. doi: 10.1101/cshperspect.a004978.
  4. Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001.
  5. Brodsky B., Persikov A.V. Molecular structure of the collagen triple helix. Adv Protein Chem. 2005;70:301–39. doi: 10.1016/S0065-3233(05)70009-7.
  6. Wittig C., Szulcek R. Extracellular Matrix Protein Ratios in the Human Heart and Vessels: How to Distinguish Pathological From Physiological Changes? Front Physiol. 2021;12:708656. doi: 10.3389/fphys.2021.708656.
  7. Voss B., Rauterberg J. Localization of collagen types I, III, IV and V, fibronectin and laminin in human arteries by the indirect immunofluorescence method. Pathol Res Pract. 1986;181(5):568–75. doi: 10.1016/S0344-0338(86)80151-0.
  8. von der Mark K. Localization of collagen types in tissues. Int Rev Connect Tissue Res. 1981;9:265–24. doi: 10.1016/b978-0-12-363709-3.50012-7.
  9. Fleischmajer R., MacDonald E.D., Perlish J.S., et al. Dermal collagen fibrils are hybrids of type I and type III collagen molecules. J Struct Biol. 1990;105(1–3):162–69. doi: 10.1016/1047-8477(90)90110-x.
  10. Myers P.R., Tanner M.A. Vascular endothelial cell regulation of extracellular matrix collagen: role of nitric oxide. Arterioscler Thromb Vasc Biol. 1998;18(5):717–22. doi: 10.1161/01.atv.18.5.717.
  11. Lopez B., Gonzalez A., Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121(14):1645–54. doi: 10.1161/CIRCULATIONAHA.109.912774.
  12. Murad S., Grove D., Lindberg K.A., et al. Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A. 1981;78(5):2879–82. doi: 10.1073/pnas.78.5.2879.
  13. Siwik D.A., Pagano P.J.,Colucci W. S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol. 2001;280(1):C53–C60. doi: 10.1152/ajpcell.2001.280.1.C53.
  14. Prockop D.J., Kivirikko K.I., Tuderman L., Guzman N.A. The biosynthesis of collagen and its disorders. N Engl J Med. 1979;301(2):77–85. doi: 10.1056/NEJM197907123010204.
  15. Karim M.A. Collagen metabolism and restenosis. Circulation. 1997;96(10):3802–05.
  16. Powell R.J., Hydowski J., Frank O., et al. Endothelial cell effect on smooth muscle cell collagen synthesis. J Surg Res. 1997;69(1):113–18. doi: 10.1006/jsre.1997.5045.
  17. Gelse K., Poschl E., Aigner T. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46. doi: 10.1016/j.addr.2003.08.002.
  18. Varani J., Dame M.K., Rittie L., et al. Decreased collagen production: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006;168(6):1861–68. doi: 10.2353/ajpath.2006.051302.
  19. Hollander A.P. Collagen degradation assays. Methods Mol Biol. 2010;622:367–78. doi: 10.1007/978-1-60327-299-5_22.
  20. Thijssen D.H., Carter S.E., Green D.J. Arterial structure and function in vascular ageing: are you as old as your arteries? J Physiol. 2016;594(8):2275–84. doi: 10.1113/JP270597.
  21. Rossert J.A., Garrett L.A. Regulation of type I collagen synthesis. Kidney Int Suppl. 1995;49:S34–S38.
  22. Yamauchi M., Sricholpech M., Terajima M., Tomer K.B., Perdivara I. Glycosylation of Type I Collagen. Methods Mol Biol. 2019;1934:127–44. doi: 10.1007/978-1-4939-9055-9_9.
  23. Barnes M.J. Collagen polymorphism in the normal and diseased blood vessel wall. Atherosclerosis. 1983;46(2):249–51 doi: 10.1016/0021-9150(83)90117-x.
  24. Brull D.J., Murray L.J., Boreham C.A., et al. Effect of a COL1A1 Sp1 binding site polymorphism on arterial pulse wave velocity: an index of compliance. Hypertension. 2001;38(3):444–48. doi: 10.1161/01.hyp.38.3.444.
  25. Aroor A.R., Demarco V.G., Jia G., et al. The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol (Lausanne). 2013;4:161. doi: 10.3389/fendo.2013.00161.
  26. McEniery C.M., Schmitt M., Qasem A., et al. Nebivolol increases arterial distensibility in vivo. Hypertension. 2004;44(3):305–10. doi: 10.1161/01.HYP.0000137983.45556.6e.
  27. Belous A.S., Pokrovskii M.V., Pokrovskaya T.G., et al. Correction of endothelial dysfunction with impaza preparation in complex with enalapril and losartan during modeling of NO deficiency. Bull Exp Biol Med. 2009;148(3):511–13. doi: 10.1007/s10517-010-0750-5.
  28. Berkenboom G., Langer I., Carpentier Y., et al. Ramipril prevents endothelial dysfunction induced by oxidized low-density lipoproteins: a bradykinin-dependent mechanism Hypertension. 1997;30:371–76. doi: 10.1161/01.hyp.30.3.371.
  29. Sansilvestri-Morel P., Rupin A., Jullien N.D., et al. Decreased production of collagen Type III in cultured smooth muscle cells from varicose vein patients is due to a degradation by MMPs: possible implication of MMP-3. J Vasc Res. 2005;42(5):388–98. doi: 10.1159/000087314.
  30. Vouyouka A.G., Pfeiffer B.J., Liem T.K. The role of type I collagen in aortic wall strength with a homotrimeric [α1(I)]3 collagen mouse model. 2001. doi: 10.1067/mva.2001.113579.
  31. Zerfu T., Yong B., Harrington J., Howard A. Does the Skeletal Phenotype of Osteogenesis Imperfecta Differ for Patients With Non-COL1A1/2 Mutations? A Retrospective Study in 113 Patients. J Pediatr Orthop. 2022;42(5):e507–14. doi: 10.1097/BPO.0000000000002116.
  32. Kuivaniemi H., Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene. 2019;707:151–71. doi: 10.1016/j.gene.2019.05.003.
  33. Katsuno-Kambe H., Teo J.L., Ju R.J., et alS. Collagen polarization promotes epithelial elongation by stimulating locoregional cell proliferation. Elife. 2021;10:e67915. doi: 10.7554/eLife.67915.
  34. Robb-Smith A.H., Dowling G.B. Discussion on the collagen vascular diseases. Proc R Soc Med. 1952;45(12):811–20.
  35. van den Berg J.S., Limburg M., Kappelle L.J., et al. The role of type III collagen in spontaneous cervical arterial dissections. Ann Neurol. 1998;43(4):494–98. doi: 10.1002/ana.410430413.
  36. Zeigler S.M., Sloan B., Jones J.A. Pathophysiology and Pathogenesis of Marfan Syndrome. Adv Exp Med Biol. 2021;1348:185–206. doi: 10.1007/978-3-030-80614-9_8.
  37. Laurent G.J. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol. 1987;252(1 Pt 1):C1–C9. doi: 10.1152/ajpcell.1987.252.1.C1.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies