“Silent rival”: pharmacological correction of the pathology of small airways in asthma (focus on ciclesonide)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In real clinical practice, a controlled course of bronchial asthma is observed in hardly half of patients. Poorly controlled asthma reduces the quality of life and affects various aspects of human life, as well as increases the risk of disease exacerbations and hospitalizations. Reasons for poor asthma control may be related to the patient, medical care and asthma therapy. Small airway pathology may correlate with specific clinical features and poor disease control. Evidence from new studies suggests that exercise-induced symptoms, overweight/obesity, nocturnal symptoms, older age, smoking, T2 inflammation, and severe bronchial hyperresponsiveness are strong independent predictors of involvement of small airways in patients with asthma. The article describes the modern, most informative methods for assessing small airways dysfunction. These include spirometry, forced pulse oscillometry, single-breath or multiple-breath nitrogen washout test, body plethysmography, high-resolution computed tomography, exhaled nitric oxide assessment, and others. In general, as various studies show, the prevalence of small airways involvement in patients with BA is about 50–60%. The significant contribution of small airways to the pathophysiological mechanisms of bronchial obstruction and the clinical manifestations of asthma make the distal bronchial tree a reasonable target for pharmacological intervention. A new generation of inhalers that generate an extrafine particle drug aerosol (with a mass median aerodynamic particle size of less than 2 µm) at a slower nebulization rate and longer duration provides higher lung deposition rates and more efficient penetration of the aerosol into the small airways. The article presents data on the efficacy, some clinical benefits, safety of extrafine forms of inhaled glucocorticosteroids (such as ciclesonide) in the treatment of patients with asthma, including with the development of mild exacerbations.

Full Text

Restricted Access

About the authors

Yulia G. Belotserkovskaya

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: belo-yuliya@yandex.ru
ORCID iD: 0000-0003-1224-1904

Cand. Sci. (Med.), Associate Professor, Department of Pulmonology

Russian Federation, Moscow

A. I. Sinopalnikov

Russian Medical Academy of Continuous Professional Education

Email: belo-yuliya@yandex.ru
ORCID iD: 0000-0002-1990-2042
Russian Federation, Moscow

A. G. Romanovskikh

Russian Medical Academy of Continuous Professional Education

Email: belo-yuliya@yandex.ru
ORCID iD: 0000-0001-9675-7451
Russian Federation, Moscow

I. P. Smirnov

Russian Medical Academy of Continuous Professional Education

Email: belo-yuliya@yandex.ru
ORCID iD: 0000-0001-8954-5303
Russian Federation, Moscow

References

  1. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22. doi: 10.1016/S0140-6736(20)30925-9.
  2. GINA report. Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/gina-reports/ (accessed April 01, 2022).
  3. World Health Organization (WHO). Available at: https://www.who.int/news-room/fact-sheets/detail/asthma
  4. Price D., Fletcher M., van der Molen T. Asthma control and management in 8,000 European patients: the REcognise Asthma and LInk to Symptoms and Experience (REALISE) survey. NPJ Prim Care Respir Med. 2014;24:14009. doi: 10.1038/npjpcrm.2014.9.
  5. Архипов В.В., Григорьева Е.В., Гавришина Е.В. Контроль над бронхиальной астмой в России: результаты многоцентрового наблюдательного исследования НИКА. Pulmonologiya. 2011;(6):87–93. [Arkhipov V.V., Grigorieva E.V., Gavrishina E.V. Asthma control in Russia: results of the NIKA multicenter observational study. Pulmonology. 2011;(6):87–93.(In Russ.)]. doi: 10.18093/0869-0189-2011-0-6-87-93.
  6. Архипов В.В., Айсанов З.P., Авдеев C.Н. Эффективность комбинаций ингаляционных глюкокортикостероидов и длительно действующих β-агонистов в условиях реальной медицинской практики: результаты многоцентрового кросс-секционного исследования у российских пациентов с бронхиальной астмой. Пульмонология. 2021;31(5):613–26. [Arkhipov V.V., Aisanov Z.R., Avdeev S.N. The effectiveness of combinations of inhaled glucocorticosteroids and long-acting β-agonists in real medical practice: results of a multicenter cross-sectional study in Russian patients with bronchial asthma. Pulmonologiya. 2021;31(5):613–26. (In Russ.)]. doi: 10.18093/0869-0189-2021-31- 5-613-626.
  7. Айсанов З.Р., Авдеев С.Н., Архипов В.В., Белевский А.С., Вознесенский Н.А. от имени российских исследователей SYGMA2. Особенности легкой бронхиальной астмыв России: результаты исследования SYGMA2. Терапевтический архив.2021;93(4):449–55. [Aisanov Z.R., Avdeev S.N., Arkhipov V.V., Belev-sky A.S., Voznesensky N.A. on behalf of Russian SYGMA2 researchers. Features of mild bronchial asthma in Russia: results of the SYGMA2 study. Terapevticheskii arkhiv. 2021;93(4):449–55. (In Russ.)]. doi: 10.26442/00403660.2021.04.200812.
  8. Ilmarinen P., Juboori H., Tuomisto L.E., et al. Effect of asthma control on general health-related quality of life in patients diagnosed with adult-onset asthma. Sci Rep. 2019;9:16107. doi: 10.1038/s41598-019-52361-9.
  9. Siroux V., Boudier A., Anto J.M., et al. Quality-of-life and asthma-severity in general population asthmatics: results of the ECRHS II study. Allergy Asthma Proc. 2008;63:547–54. doi: 10.1111/j.1398-9995.2008.01638.x.
  10. Sears M.R. Can we predict exacerbations of asthma? Am J Respir Crit Care Med. 2019;199:399–400. doi: 10.1164/rccm.201811-2122ED.
  11. Price D., Wilson A.M., Chisholm A., et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J Asthma Allergy. 2016;9:1–12. doi: 10.2147/JAA.S97973.
  12. Pavord I.D., Mathieson N., Scowcroft A., et al. The impact of poor asthma control among asthma patients treated with inhaled corticosteroids plus long-acting β2-agonists in the United Kingdom: a cross-sectional analysis. Prim Care Respir J. 2017;27:17. doi: 10.1038/s41533-017-0014-1.
  13. Bateman E.D., Buhl R., O’Byrne P.M., et al. Development and validation of a novel risk score for asthma exacerbations: the risk score for exacerbations. J Allergy Clin Immunol. 2015;135:1457–64. doi: 10.1016/j.jaci.2014.08.015.
  14. McFadden E.R. Improper patient techniques with metered dose inhalers: Clinical consequences and solutions to misuse. J Allergy Clin Immunol. 1995;96:278–83. doi: 10.1016/s0091-6749(95)70206-7.
  15. Barnes P.J., Szefler S.J., Reddel H.K., Chipps B.E. Symptoms and perception of airway obstruction in asthmatic patients: Clinical implications for use of reliever medications. J Allergy Clin Immunol. 2019;144(5):1180–86. doi: 10.1016/j.jaci.2019.06.040.
  16. Larsson K., Kankaanranta H., Janson C., et al. Bringing asthma care into the twenty-first century. NPJ Prim Care Respir Med. 2020;30(1):25. doi: 10.1038/s41533-020-0182-2.
  17. Spallarossa D., Battistini E., Silvestri M., et al. Steroid-naive adolescents with mild intermittent allergic asthma have airway hyperresponsiveness and elevated exhaled nitric oxide levels. J Asthma. 2003;40:301–10. doi: 10.1081/jas-120018629.
  18. Contoli M., Santus P., Papi A. Small airway disease in asthma: pathophysiological and diagnostic considerations. Curr Opin Pulm Med. 2015;21(1):68–73. doi: 10.1097/MCP.0000000000000122.
  19. Scichilone N., Contoli M., Paleari D., et al. Assessing and accessing the small airways; implications for asthma management. Pulm Pharmacol Ther. 2013;26(2):172–79. doi: 10.1016/j.pupt.2012.10.001.
  20. Scichilone N., Benfante A., Morandi L, Bellini F., Papi A. Impact of extrafine formulations of inhaled corticosteroids/long-acting beta-2 agonist combinations on patient-related outcomes in asthma and COPD. Patient Relat Outcome Meas. 2014;5:153–62. doi: 10.2147/PROM.S55276.
  21. Rohrer F. Der stromungswiderstand in der menschlichen atemwegen und der einfluss der unregelmassigen verzweigung es bronchial-systems auf der atmungsverlauf in vershiedenen lungenbezinken. Arch Ges Physiol. 1915; 162:225–29.
  22. Mead J. The lung’s “quiet zone. N Engl J Med. 1970;282(23):1318–19.
  23. Weibel E.R. Morphometry of the Human Lung. New York: Academic; 1963.
  24. Green M. How big are the bronchioles? St. Thomas Hospital Gazette 1965. P. 136–39.
  25. Macklem P.T., Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol. 1967;22(3):395–401.
  26. Hogg J.C., Macklem P.T., Thurlbeck W.M. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278(25): 1355–60.
  27. Hogg J.C., Pare ́ P.D., Hackett T.L. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary dis- ease. Physiol Rev. 2017;97(2):529–52. doi: 10.1152/physrev.00025.2015.
  28. Sorkness R.L., Bleecker E.R., Busse W.W., et al. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol (1985). 2008;104(2):394–403. doi: 10.1152/japplphysiol.00329.2007.
  29. Ueda T., Niimi A., Matsumoto H., et al. Role of small airways in asthma: investigation using high-resolution computed tomography. J Allergy Clin Immunol. 2006;118:1019–25. doi: 10.1016/j.jaci.2006.07.032.
  30. Winkler J., Hagert-Winkler A., Wirtz H., Hoheisel G. Modern impulse oscillometry in the spectrum of pulmonary function testing methods. Pneumologie. 2009;63(8):461–69. doi: 10.1055/s-0029-1214938.
  31. Yixin S., Aledia A.S., Tatavoosian A.V., et al. Relating small airways to asthma control by using impulse oscillometry in children. J Allergy Clin Immunol. 2012;129(3):671–78. doi: 10.1016/j.jaci.2011.11.002.
  32. Lehtimaki L., Kankaanranta H., Saarelainen S., et al. Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J. 2002;20:841–45. doi: 10.1183/09031936.02.00202002.
  33. Berry M., Hargadon B., Morgan A., et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25:986–91. doi: 10.1183/09031936.05.00132404.
  34. Brindicci C., Ito K., Resta O., et al. Exhaled nitric oxide from lung periphery is increased in COPD. Eur Respir J 2005;26(1):52–9. doi: 10.1183/09031936.04.00125304.
  35. Shahbazi S, Arif AA, Portwood SG, Thompson ME. Risk factors of smoking among health care professionals. J Prim Care Community Health. 2014;5(4):228–33. doi: 10.1177/2150131914527618.
  36. Alcazar-Navarrete B., Ruiz Rodriguez O., Conde Baena P., et al. Persistently elevated exhaled nitric oxide fraction is associated with increased risk of exacerbation in COPD. Eur Respir J. 2018;51(1):1701457. doi: 10.1183/13993003.01457-2017.
  37. Cottini M., Lombardi C., Passalacqua G., et al. Small Airways: The “Silent Zone” of 2021 GINA Report? Front Med. 2022;9:884679. doi: 10.3389/fmed.2022.884679.
  38. Bourdin A., Paganin F., Prefaut C., et al. Nitrogen washout slope in poorly controlled asthma. Allergy. 2006;61:85–9. doi: 10.1111/j.1398–9995.2006.00970.x.
  39. Battaglia S., den Hertog H., Timmers M.C., et al. Small airways function and molecular markers in exhaled air in mild asthma. Thorax. 2005;60:639–44. doi: 10.1136/thx.2004.035279.
  40. Lehtimaki L., Kankaanranta H., Saarelainen S., et al. Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J. 2002;20:841–45. doi: 10.1183/09031936.02.00202002.
  41. Berry M., Hargadon B., Morgan A., et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25:986–91. doi: 10.1183/09031936.05.00132404.
  42. Gono H., Fujimoto K., Kawakami S., Kubo K. Evaluation of airway wall thickness and air trapping by HRCT in asymptomatic asthma. Eur Respir J. 2003;22(6):965–71. doi: 10.1183/09031936.03.00085302.
  43. Laurent F., Latrabe V., Raherison C., et al. Functional significance of air trapping detected in moderate asthma. Eur Radiol. 2000;10(9):140–410. doi: 10.1007/s003300000504.
  44. Newman K.B., Lynch D.A., Newman L.S., et al. Quantitative computed tomography detects air trapping due to asthma. Chest. 1994;106(1):105–9. doi: 10.1378/chest.106.1.105.
  45. Beigelman-Aubry C., Capderou A., Grenier P.A., et al. Mild intermittent asthma: CT assess- ment of bronchial cross-sectional area and lung attenuation at con- trolled lung volume. Radiology. 2002;223(1):181–87. doi: 10.1148/radiol.2231010779.
  46. Goldin J.G., Tashkin D.P., Kleerup E.C., et al. Comparative effects of hydrofluoroalkane and chlor- ofluorocarbon beclomethasone dipropionate inhalation on small air- ways: assessment with functional helical thin-section computed tomography. J Allergy Clin Immunol. 1999;104(6):S258-67. doi: 10.1016/s0091-6749(99)70043-6.
  47. Tunon-de-Lara J.M., Laurent F., Giraud V., et al. Air trapping in mild and moderate asthma: effect of inhaled corticosteroids. J Allergy Clin Immunol. 2007;119(3):583-90. doi: 10.1016/j.jaci.2006.11.005.
  48. Busacker A., Newell J.DJr, Keefe T., et al. A multivariate analysis of risk factors for the air-trap- ping asthmatic phenotype as measured by quantitative CT analysis. Chest. 2009;135(1):48–56. doi: 10.1378/chest.08-0049.
  49. Montaudon M., Lederlin M., Reich S., et al. Bronchial measurements in patients with asthma: comparison of quantitative thin-section CT findings with those in healthy subjects and correlation with pathologic findings. Radiology. 2009;253(3):844–53. doi: 10.1148/radiol.2533090303.
  50. Calzetta L., Aiello M., Frizzelli A., et al. Small airways in asthma: from bench-to-bedside. Minerva Med. 2022;113(1):79–93. doi: 10.23736/S0026-4806.21.07268-2.
  51. Postma D.S., Brightling C., Baldi S., et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respir Med. (2019);7:402–16. doi: 10.1016/S2213-2600(19)30049-9.
  52. Cottini M., Licini A., Lombardi C., Berti A. Clinical characterization and predictors of IOS-defined small-airway dysfunction in asthma. J Allergy Clin Immunol Pract. 2020;8:997–1004. doi: 10.1016/j.jaip.2019.10.040.
  53. Abdo M., Trinkmann F., Kirsten A.M., et al. Study Group. Small airway dysfunction links asthma severity with physical activity and symptom control. J Allergy Clin Immunol Pract. 2021;9:3359–68. doi: 10.1016/j.jaip.2021.04.035.
  54. Usmani O.S., Singh D., Spinola M., et al. The prevalence of small airways disease in adult asthma: a systematic literature review. Respir Med. (2016) 116:19–27. doi: 10.1016/j.rmed.2016.05.006
  55. Cottini M., Licini A., Lombardi C., Berti A. Prevalence and features of IOS- defined small airway disease across asthma severities. Respir Med. 2021;176:106243. doi: 10.1016/j.rmed.2020.106243
  56. Cottini M., Licini A., Lombardi C., et al. Small airway dysfunction and poor asthma control: a dangerous liaison. Clin Mol Allergy. 2021;19:7. doi: 10.1186/s12948-021-00147-8.
  57. Cottini M., Lombardi C., Micheletto C. Small airway dysfunction and bronchial asthma control: the state of the art. Asthma Res Pract. 2015;1:13. doi: 10.1186/s40733-015-0013-3.
  58. van der Wiel E., ten Hacken N.H., et al. Small airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. J Allergy Clin Immunol. 2013;131:646–57. doi: 10.1016/j.jaci.2012.12.1567.
  59. Contoli M., Bousquet J., Fabbri L.M., et al. The small airways and distal lung compartment in asthma and COPD: a time for reappraisal. Allergy. 2010;65:141–51. doi: 10.1111/j.1398-9995.2009.02242.x
  60. Abdo M., Trinkmann F., Kirsten A..M, et al. Alliance study group. The relevance of small airway dysfunction in asthma with nocturnal symptoms. J Asthma Allergy. 2021;14:897–905. doi: 10.2147/JAA.S313572.
  61. Cottini M., Lombardi C., Berti A., Comberiati P. Small-airway dysfunction in paediatric asthma. Curr Opin Allergy Clin Immunol. 2021;21:128–34. doi: 10.1097/ACI.0000000000000728.
  62. Woolcock A.J. Effect of drugs on small airways. Am J Respir Crit Care Med. 1998;157(5 Pt 2):S203–S207. doi: 10.1164/ajrccm.157.5.rsaa-8.
  63. Leach C., Colice G.L., Luskin A. Particle size of inhaled corticosteroids: does it matter? J Allergy Clin Immunol. 2009;124(6 Suppl):S88–S93. doi: 10.1016/j.jaci.2009.09.050.
  64. Leach C.L., Davidson P.J., Hasselquist B.E., Boudreau R.J. Lung deposition of hydrofluoroalkane-134a beclomethasone is greater than that of chlorofluorocarbon fluticasone and chlorofluorocarbon beclomethasone: a cross- over study in healthy volunteers. Chest. 2002;122(2):510–16. doi: 10.1378/chest.122.2.510.
  65. Newman S., Salmon A., Nave R., Drollmann A. High lung deposition of 99mTc-labeled ciclesonide administered via HFA-MDI to patients with asthma. Respir Med. 2006;100(3):375–84. doi: 10.1016/j.rmed.2005.09.027.
  66. Davies R.J., Stampone P., O’Connor B.J. Hydrofluoroalkane-134a beclomethasone dipropionate extrafine aerosol provides equivalent asthma control to chlorofluorocarbon beclomethasone dipropionate at approximately half the total daily dose. Respir Med. 1998;92(Suppl A):23–31. doi: 10.1016/s0954-6 111(98)90214-1.
  67. Gross G., Thompson P.J., Chervinsky P., Vanden Burgt J. Hydrofluoroalkane-134a beclomethasone dipropionate, 400 microg, is as effective as chlorofluorocarbon beclomethasone dipropionate, 800 microg, for the treatment of moderate asthma. Chest. 1999;115(2):343–51. doi: 10.1378/chest.115.2.343.
  68. Vermeulen J.H., Gyurkovits K., Rauer H., Engelstatter R. Randomized comparison of the efficacy and safety of ciclesonide and budesonide in adolescents with severe asthma. Respir Med. 2007;101(10):2182–91. doi: 10.1016/j.rmed.2007.05.006.
  69. von B.A., Engelstatter R., Minic P., et al. Comparison of the efficacy and safety of ciclesonide 160 microg once daily vs. budesonide 400 microg once daily in children with asthma. Pediatr Allergy Immunol. 2007;18(5):391-400. doi: 10.1111/j.1399-3038.2007.00538.x.
  70. Price D., Martin R.J., Barnes N., et al. Prescribing practices and asthma control with hydrofluoroalkane-beclomethasone and fluticasone: a real-world observational study. J Allergy Clin Immunol. 2010;126(3):511–18. doi: 10.1016/j.jaci.2010.06.040.
  71. Barnes N., Price D., Colice G., et al. Asthma control with extrafine-particle hydrofluoroalkane-beclometasone vs. large- particle chlorofluorocarbon-beclometasone: a real-world observational study. Clin Exp Allergy. 2011;41(11):1521–32. doi: 10.1111/j.1365-2222.2011.03820.x.
  72. Martin R.J., Price D., Roche N., et al. Cost-effectiveness of initiating extrafine- or standard size-particle inhaled corticosteroid for asthma in two health-care systems: a retrospective matched cohort study. NPJ Prim Care Respir Med. 2014;24:14081. doi: 10.1038/npjpcrm.2014.81.
  73. Postma D.S., Roche N., Colice G., et al. Comparing the effectiveness of small-particle versus large-particle inhaled corticosteroid in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:1163–86. doi: 10.2147/COPD.S68289.
  74. Roche N., Postma D.S., Colice G., et al. Differential effects of inhaled corticosteroids in smokers/ex-smokers and nonsmokers with asthma. Am J Respir Crit Care Med. 2015;191(8):960–64. doi: 10.1164/rccm.201411-2116LE.
  75. van der Molen T., Postma D.S., Martin R.J., et al. Effectiveness of initiating extrafine-particle versus fine-particle inhaled corticosteroids as asthma therapy in the Netherlands. BMC Pulm Med. 2016;16(1):80. doi: 10.1186/s12890-016-0234-0.
  76. Allegra L., Cremonesi G., Girbino G., et al. Real-life prospective study on asthma control in Italy: cross-sectional phase results. Respir Med. 2012;106(2):205–14. doi: 10.1016/j.rmed.2011.10.001.
  77. Sonnappa S., McQueen B., Postma D.S., et al. Extrafine Versus Fine Inhaled Corticosteroids in Relation to Asthma Control: A Systematic Review and Meta-Analysis of Observational Real-Life Studies. J Allergy Clin Immunol Pract. 2018;6(3):907–15.e7. doi: 10.1016/j.jaip.2017.07.032.
  78. Postma D.S., Dekhuijzen R., van der Molen T., et al. Asthma-Related Outcomes in Patients Initiating Extrafine Ciclesonide or Fine-Particle Inhaled Corticosteroids. Allergy Asthma Immunol Res. 2017;9(2):116–25. doi: 10.4168/aair.2017.9.2.116.
  79. Zietkowski Z., Lukaszyk M., Skiepko R., et al. Efficacy of ciclesonide in the treatment of patients with asthma exacerbation. Postepy Dermatol Alergol. 2019;36(2):217–22. doi: 10.5114/ada.2019.84596.
  80. Langdon C.G., Adler M., Mehra S., et al. Once-daily ciclesonide 80 or 320 microg for 12 weeks is safe and effective in patients with persistent asthma. Respir Med. 2005;99(10):1275–85. doi: 10.1016/j.rmed.2005.05.024.
  81. Busse W., Kaliner M.A., Berstein D. The novel inhaled corticosteroid ciclesonide is efficacious and has a favourable safety profile in adults and adolescents with severe persistent asthma. J Allergy Asthma Immunol. 2005;115(2):213. doi: 10.1016/j.jaci.2004.12.859.
  82. Engelstaetter R, Banerji D, Steinijans V, et al. Low incidence of oropharyngeal adverse events in asthma patients treated with ciclesonide: results from a pooled analysis. Am J Respir Crit Care Med. 2004;169(7):72.
  83. URL: http://rusbiopharm.ru/tpost/a4dioul421-pervii-ingalyatsionnii-tsiklesonid-stal
  84. Отчет о проведении сравнительного теста аэродинамического распределения частиц препаратов «Асмалиб® Эйр аэрозоль для ингаляций дозированный, 40 мкг/доза, 80 мкг/доза, 160 мкг/доза» производства ООО «ПСК Фарма», Россия и «Альвеско® 40 мкг/доза, 80 мкг/доза, 160 мкг/доза» (АстраЗенека АБ, Швеция). [Report on the comparative test of the aerodynamic distribution of particles of preparations «Asmalib® Air aerosol for inhalation dosed, 40 mcg/dose, 80 mcg/dose, 160 mcg/dose» manufactured by PSK Pharma LLC, Russia and Alvesko® 40 mcg/dose, 80 µg/dose, 160 µg/dose” (AstraZeneca AB, Sweden). (In Russ.)].
  85. Отчет о результатах клинического исследования лекарственного препарата для медицинского применения по протоколу «Международное открытое рандомизированное сравнительное исследование эффективности и безопасности препаратов Циклесонид, аэрозоль для ингаляций дозированный, 160 мкг/доза (ООО «ПСК “Фарма”», Россия) и Альвеско, аэрозоль для ингаляций дозированный, 160 мкг/доза (АстраЗенека АБ, Швеция) у пациентов с частично контролируемой бронхиальной астмой». [Report on the results of a clinical trial of a medicinal product for medical use according to the protocol «International open randomized comparative study of the efficacy and safety of drugs Cyclesonide, dosed aerosol for inhalation, 160 mcg/dose (PSK Pharma LLC, Russia) and Alvesco, aerosol for inhalation dosed, 160 mcg/dose (AstraZeneca AB, Sweden) in patients with partially controlled bronchial asthma. (In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (156KB)
3. Fig. 2

Download (125KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies