Characterization of the plasminogen activator inhibitor type 1 gene (PAI-1) and its role in the development of arterial thrombosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of the fibrinolytic system in vivo. The results of modern studies do not allow to form an unambiguous opinion about the degree of influence of the PAI-1 level and its polymorphism (4G/5G, 4G/4G) on the incidence of thrombotic events in the arterial bed. In this regard, the purpose of this review was to compile a general characterization of the properties of PAI-1, as well as to establish the role of its polymorphism in the development of thrombosis, depending on individual physiological and ethnic factors, as well as promising directions in its further study.

Full Text

Restricted Access

About the authors

N. V. Izmozherova

Ural State Medical University, Department of Pharmacology and Clinical Pharmacology

Email: kadn-leonid@mail.ru
ORCID iD: 0000-0001-7826-9657
Russian Federation, Yekaterinburg

A. A. Popov

Ural State Medical University, Department of Pharmacology and Clinical Pharmacology

Email: kadn-leonid@mail.ru
ORCID iD: 0000-0001-6216-2468
Russian Federation, Yekaterinburg

I. P. Antropova

Ural State Medical University, Department of Pharmacology and Clinical Pharmacology

Email: kadn-leonid@mail.ru
ORCID iD: 0000-0002-9957-2505
Russian Federation, Yekaterinburg

L. I. Kadnikov

Ural State Medical University, Department of Pharmacology and Clinical Pharmacology

Author for correspondence.
Email: kadn-leonid@mail.ru
ORCID iD: 0000-0002-2623-2657

PhD student

Russian Federation, Yekaterinburg

A. O. Polyanok

Ural State Medical University, Department of Pharmacology and Clinical Pharmacology

Email: kadn-leonid@mail.ru
ORCID iD: 0000-0003-1300-8768
Russian Federation, Yekaterinburg

V. E. Ispavsky

Ural State Medical University, Department of Pharmacology and Clinical Pharmacology

Email: kadn-leonid@mail.ru
ORCID iD: 0000-0001-8152-6474
Russian Federation, Yekaterinburg

References

  1. NCD Countdown 2030 collaborators. NCD Countdown 2030: pathways to achieving Sustainable Development Goal target 3.4. Lancet. 2020;396(10255):918–34. doi: 10.1016/S0140-6736(20)31761-X.
  2. Федеральная служба государственной статистики. [Federal State Statistics Service. (In Russ.)].URL: https://rosstat.gov.ru/folder/13721 (дата обращения/access date: 01.02.2023).
  3. Khan S.S. The Central Role of PAI-1 in COVID-19: Thrombosis and beyond. Am J Respir Cell Mol Biol. 202;65(3):238–40. doi: 10.1165/rcmb.2021-0208ED.
  4. Borczuk A.C., Salvatore S.P., Seshan S.V., et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol. 2020;33(11):2156–68. doi: 10.1038/s41379-020-00661-1.
  5. Whyte C.S., Simpson M., Morrow G.B., et al. The suboptimal fibrinolytic response in COVID-19 is dictated by high PAI-1. J Thromb Haemost. 2022;20(10):2394–406. doi: 10.1111/jth.15806.
  6. Chapin J.C., Hajjar K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29(1):17–24. doi: 10.1016/j.blre.2014.09.003.
  7. Fay W.P., Garg N., Sunkar M. Vascular functions of the plasminogen activation system. Arterioscler Thromb Vasc Biol. 2007;27:1231–37. doi: 10.1161/ATVBAHA.107.140046.
  8. Mutch N.J., Thomas L., Moore N.R., et al. TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost. 2007;5(4):812–17. doi: 10.1111/j.1538-7836.2007.02430.x.
  9. Cesari M., Pahor M., Incalzi R.A. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28(5):e72–91. doi: 10.1111/j.1755-5922.2010.00171.x.
  10. Declerck P.J., Gills A. Three decades of research on plasminogen activator inhibitor-1: a multifaceted serpin. Semin Thromb Hemost. 2013;39(4):356–64. doi: 10.1055/s-0033-1334487.
  11. Morange P.E., Saut N., Alessi M.C., et al. Association of plasminogen activator inhibitor (PAI)-1 (SERPINE1) SNPs with myocardial infarction, plasma PAI-1, and metabolic parameters: the HIFMECH study. Arterioscler Thromb Vasc Biol. 2007;27(10):2250–57. doi: 10.1161/ATVBAHA.107.149468.
  12. Aso Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front Biosci. 2007;12:2957–66. doi: 10.2741/2285.
  13. Loskutoff D.J., Samad F. The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol. 1998;18(1):1–6. doi: 10.1161/01.atv.18.1.1.
  14. Szegedi I., Nagy A., Székely E.G., et al. PAI-1 5G/5G genotype is an independent risk of intracranial hemorrhage in post-lysis stroke patients. Ann Clin Transl Neurol. 2019;6(11):2240–50. doi: 10.1002/acn3.50923.
  15. Loskutoff D.J., Van Mourik J.A., Erickson L.A., Lawrence D. Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells. Proc Natl Acad Sci USA. 1983;80:2956–60. doi: 10.1073/pnas.80.10.2956.
  16. Zorio E., Gilabert-Estelles J., Espana F., et al. Fibrinolysis: the key to new pathogenetic mechanisms. Curr Med Chem. 2008;15:923–29. URL: doi: 10.2174/092986708783955455.
  17. Sillen M., Declerck P.J. A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target? Int J Mol Sci. 2021;22(5):2721. doi: 10.3390/ijms22052721.
  18. Gils A., Pedersen K.E., Skottrup P., et al. Biochemical importance of glycosylation of plasminogen activator inhibitor-1. Thromb Haemost. 2003;90:206–17. doi: 10.1160/TH03-01-0034.
  19. Gettins P.G., Olson S.T. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J. 2016;473:2273–93. doi: 10.1042/BCJ20160014.
  20. Brogren H., Wallmark K., Deinum J., et al. Platelets Retain High Levels of Active Plasminogen Activator Inhibitor 1. PLoS One. 2011;6(11):e26762. doi: 10.1371/journal.pone.0026762.
  21. Thompson L.C., Goswami S., Ginsberg D.S., et al. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition. Protein Sci. 2010;20:353–65. doi: 10.1002/pro.568.
  22. Tofler G., Massaro J., O’Donnell C., et al. Plasminogen activator inhibitor and the risk of cardiovascular disease: The Framingham Heart Study. Thromb Res. 2016;140:30–5. doi: 10.1016/j.thromres.2016.02.002.
  23. Schar C.R., Jensen J.K., Christensen A., et al. Characterization of a site on PAI-1 that binds to vitronectin outside of the somatomedin B domain. J Biol Chem. 2008;283(42):28487–96. doi: 10.1074/jbc.M804257200.
  24. Brogren H., Karlsson L., Andersson M., et al. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood. 2004;104:3943–8. doi: 10.1182/blood-2004-04-1439.
  25. Napolitano F., Montuori N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. Int J Mol Sci. 2022;23(11):6065. doi: 10.3390/ijms23116065.
  26. Morrow G.B., Whyte C.S., Mutch N.J. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. Haematologica. 2020;105(12):2824–33. doi: 10.3324/haematol.2019.230367.
  27. Torr-Brown S.R., Sobel B.E. Attenuation of thrombolysis by release of plasminogen activator inhibitor type-1 from platelets. Thromb Res. 1993;72:413–21. doi: 10.1016/0049-3848(93)90241-F.
  28. Huntington J.A., Read R.J., Carrell R.W. Structure of a serpin–protease complex shows inhibition by deformation. Na. Cell Biol. 2000;407:923–26. doi: 10.1038/35038119.
  29. Perron M.J., Blouse G.E., Shore J.D. Distortion of the Catalytic Domain of Tissue-type Plasminogen Activator by Plasminogen Activator Inhibitor-1 Coincides with the Formation of Stable Serpin-Proteinase Complexes. J Biol Chem. 2003;278:48197–203. doi: 10.1074/jbc.M306184200.
  30. Zhang X., Cai X., Pan J. Correlation Between PAI-1 Gene 4G/5G Polymorphism and the Risk of Thrombosis in Ph Chromosome-Negative Myeloproliferative Neoplasms. Clin Appl Thromb Hemost. 2020;26:1076029620935207. doi: 10.1177/1076029620935207.
  31. Rylander A.-C.J., Lindgren A., Deinum J., et al. Fibrinolysis inhibitors in plaque stability: A morphological association of PAI-1 and TAFI in advanced carotid plaque. J Thromb Haemost. 2017;15:758–69. doi: 10.1111/jth.13641.
  32. Ellulu M.S., Patimah I., Khaza’Ai H., et al. Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 2017;4:851–63. doi: 10.5114/aoms.2016.58928.
  33. Rega G., Kaun C., Weiss T., et al. Inflammatory Cytokines Interleukin-6 and Oncostatin M Induce Plasminogen Activator Inhibitor-1 in Human Adipose Tissue. Circ. 2005;111:1938–45. doi: 10.1161/01.CIR.0000161823.55935.BE.
  34. Iwasaki H., Okamoto R., Kato S., et al. High glucose induces plasminogen activator inhibitor-1 expression through Rho/Rho-kinase-mediated NF-κB activation in bovine aortic endothelial cells. Atherosclerosis. 2008;196:22–8. doi: 10.1016/j.atherosclerosis.2006.12.025.
  35. Levine J.A., Oleaga C., Eren M., et al. Role of PAI-1 in hepatic steatosis and dyslipidemia. Sc. Rep. 2021;11:1–13. doi: 10.1038/s41598-020-79948-x.
  36. Raji M.A., Al Snih S., Ray L.A., et al. Cognitive status and incident disability in older Mexican Americans: findings from the Hispanic established population for the epidemiological study of the elderly. Eth. Dis. 2004;14:26–31. [PMID: 15002920].
  37. Lutsey P.L., Cushman M., Steffen L.M., et al. Plasma hemostatic factors and endothelial markers in four racial/ethnic groups: the MESA study. . Throm. Haemost. 2006;4:2629–35. doi: 10.1111/j.1538-7836.2006.02237.x.
  38. Sillen M., Declerck P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Fron. Cardiovas. Med. 2020;7:622473. doi: 10.3389/fcvm.2020.622473.
  39. Oh J., An H.J., Kim J.O., et al. Association between Five Common Plasminogen Activator Inhibitor-1 (PAI-1) Gene Polymorphisms and Colorectal Cancer Susceptibility. Int J Mol Sci. 2020;21(12):4334. doi: 10.3390/ijms21124334.
  40. Eriksson B.O., Gahm C., Halle M. Upregulation of Plasminogen Activator Inhibitor-1 in Irradiated Recipient Arteries and Veins from Free Tissue Transfer Reconstruction in Cancer Patients. Mediators Inflamm. 2018;2018:4058986. doi: 10.1155/2018/4058986.
  41. Festa A., D’Agostino R.Jr., Rich S.S., et al. Promoter (4G/5G) plasminogen activator inhibitor-1 genotype and plasminogen activator inhibitor-1 levels in blacks, Hispanics, and non-Hispanic whites: the Insulin Resistance Atherosclerosis Study. Circ. 2003;107(19):2422–27. doi: 10.1161/01.CIR.0000066908.82782.3A.
  42. Akhter M.S., Diswas A., Abdullah S.M., et al. The Role of PAI-1 4G/5G Promoter Polymorphism and Its Levels in the Development of Ischemic Stroke in Young Indian Population. Clin Appl Thromb Hemost. 2017;23(8):1071–76. doi: 10.1177/1076029617705728.
  43. Hultman K., Tjärnlund-Wolf A., Odeberg J., et al. Allele-specific transcription of the PAI-1 gene in human astrocytes. Thromb Haemost. 2010;104:998–1008. doi: 10.1160/TH10-04-0243.
  44. Eriksson P., Kallin B., van’t Hooft F.M., et al. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA. 1995;92(6):1851–55. doi: 10.1073/pnas.92.6.1851.
  45. Parpugga T.K., Tatarunas V., Skipskis V., et al. The Effect of PAI-1 4G/5G Polymorphism and Clinical Factors on Coronary Artery Occlusion in Myocardial Infarction. Dis Markers. 2015;2015:260101. doi: 10.1155/2015/260101.
  46. Fernandes K.S., Sandrim V.C. 4G/5G polymorphism modulates PAI-1 circulating levels in obese women. Mol Cell Biochem. 2012;364(1–2):299–301. doi: 10.1007/s11010- 012-1230-1.
  47. Onalan O., Balta G., Oto A., et al. Plasminogen activator inhibitor-1 4G4G genotype is associated with myocardial infarction but not with stable coronary artery disease. J Thromb Thrombolysis. 2008;26(3):211–17. doi: 10.1007/s11239-007-0083-z.
  48. Nikolopoulos G.K., Bagos P.G., Tsangaris I., et al. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis. Clin Chem Lab Med. 2014;52(7):937–50. doi: 10.1515/cclm-2013-1124.
  49. Kumar S., Verma A.K., Sagar V., et al. Genotype Variations and Association between PAI-1 Promoter Region (4G/5G and -844G/A) and Susceptibility to Acute Myocardial Infarction and Chronic Stable Angina. Cardiol Res Pract. 2021;2021:5551031. doi: 10.1155/2021/5551031.
  50. García-González I.J., Valle Y., Sandoval-PintomE., et al. The -844 G>A PAI-1 Polymorphism Is Associated with Acute Coronary Syndrome in Mexican Population. Dis Markers. 2015;2015:460974. doi: 10.1155/2015/460974.
  51. Tjärnlund-Wolf A., Brogren H., Lo E.H., Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke. 2012;43(10):2833–39. doi: 10.1161/STROKEAHA.111.622217.
  52. Wang J., Sun Z., Yang Y., et al. Association of laboratory parameters and genetic polymorphisms with ischemic stroke in Chinese Han population. Exp. Ther. Med. 2021;21(5):490. doi: 10.3892/etm.2021.9921.
  53. Jiménez-Gonzálezn M.C., Santiago-Germán D., Castillo-Henkel E.F., et al. Identification of genetic risk factors associated with ischaemic stroke in young Mexican patients. Neurologia (Engl Ed). 2021;36(5):337–45. doi: 10.1016/j.nrleng.2018.01.011.
  54. Hu X., Xin Zan X., Xie Z., et al. Association Between Plasminogen Activator Inhibitor-1 Genetic Polymorphisms and Stroke Susceptibility. Mol Neurobiol. 2017;54(1):328–41. doi: 10.1007/s12035-015-9549-8.
  55. Fernandez-Cadenas I., Del Rio-Espinola A., Rubiera M., et al. PAI-1 4G/5G polymorphism is associated with brain vessel reocclusion after successful fibrinolytic therapy in ischemic stroke patients. Int J Neurosci. 2010;120(4):245–51. doi: 10.3109/00207451003597169.
  56. Sarecka-Hujar B., Ilona Kopyta I., Michał Skrzypek M. Lack of Associations Between PAI-1 and FXIII Polymorphisms and Arterial Ischemic Stroke in Children: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost. 2019;25:1076029619869500. doi: 10.1177/1076029619869500.
  57. Matsuyama T., Kubli S.P., Yoshinaga S.K., et al. An aberrant STAT pathway is central to COVID‐19. Cell Death Differ. 2020;27:3209–25. doi: 10.1038/s41418-020-00633-7.
  58. Lapić I., Antolic M.R., Horvat I., et al. Association of polymorphisms in genes encoding prothrombotic and cardiovascular risk factors with disease severity in COVID-19 patients: A pilot study. J Med Virol. 2022;94(8):3669–75. doi: 10.1002/jmv.27774.
  59. Han M., Pandey D. ZMPSTE24 Regulates SARS-CoV-2 Spike Protein–enhanced Expression of Endothelial PAI-1. Am J Respir Cell Mol Biol. 2021;65(3):300–8. doi: 10.1165/rcmb.2020-0544OC.
  60. Rapkiewicz A.V., Mai X., Carsons S.E., et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine. 2020;24:100434. doi: 10.1016/j.eclinm.2020.100434.
  61. Lombardi C.M., Carubelli V., Iorio A., et al. Association of Troponin Levels With Mortality in Italian Patients Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study. JAMA. Cardiol. 2020;5(11):1274–80. doi: 10.1001/jamacardio.2020.3538.
  62. Zuo Y., Warnock M., Harbaugh A., et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci Rep. 2021;11(1):1580. doi: 10.1038/s41598-020-80010-z.
  63. Morrow G.B., Mutch N.J. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin Thromb Hemost. 2023;49(3):305–13. doi: 10.1055/s-0042-1758791.
  64. Marchenko V., Mukhametdinova D., Amosova I., et al. Influenza A(H1N1)pdm09 Virus Alters Expression of Endothelial Factors in Pulmonary Vascular Endothelium in Rats. Viruses. 2022;14(11):2518. doi: 10.3390/v14112518.
  65. Марченко В.А., Барашкова С.В., Зелинская И.А. и др. [Модуляция активности эндотелиальных факторов в эндотелиальных клетках человека при инфекции вирусом гриппа A(H1N1)pdm09]. Вопросы вирусологии. 2021;66(3):198–210. [Marchenko V.A., Barashkova S.V., Zelinskaya I.A., et al. Modulation of endothelial factors activity in human endothelial cells in influenza A(H1N1)pdm09 virus infection. Voprosy Virusologii. 2021;66(3):198–210. (In Russ.)]. doi: 10.36233/0507-4088-48.
  66. Labeyrie P.E., Goulay R., Martinez de Lizarrondo S., et al. Vascular Tissue-Type Plasminogen Activator Promotes Intracranial Aneurysm Formation. Stroke. 2017;48(9):2574–82. doi: 10.1161/STROKEAHA.117.017305.
  67. Choi G.H., Cho S.H., An H.J., et al. Association between PAI-1 Polymorphisms and Ischemic Stroke in a South Korean Case-Control Cohort. Int J Mol Sci. 2023;24(9):8041. doi: 10.3390/ijms24098041.
  68. Oszajca K., Wroński K., Janiszewska G., et al. The study of t-PA, u-PA and PAI-1 genes polymorphisms in patients with abdominal aortic aneurysm. Mol Biol Rep. 2014;41(5):2859–64. doi: 10.1007/s11033-014-3141-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies