Pathogenetic mechanisms of the association of MMP-9 and TIMP-1 biomarkers with the severity of chronic obstructive pulmonary disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Inflammation, oxidative stress, and an imbalance between proteases and protease inhibitors are recognized pathophysiological features of chronic obstructive pulmonary disease (COPD).

Objective. Determination of the serum levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with COPD and evaluation of their association with the severity of COPD symptoms.

Methods. In a cohort study, serum MMP-9 and TIMP-1 levels, the ratio of MMP-9/TIMP-1 in the peripheral blood of COPD patients and in the control group, as well as their relationship with pulmonary function were determined. Spirometry, symptom severity scale (mMRC and CAT), and history of exacerbations were assessed.

Results. COPD patients (n=96) had significantly higher serum MMP-9 and TIMP-1 levels, higher MMP-9/TIMP-1 ratio than controls (n=40) (P ≤0.001). MMP-9 and MMP-9/TIMP-1 ratio were negatively correlated with FVC, FEV1, FEV1/FVC (P<0.05). COPD GOLD-3-4 patients had higher MMP-9 levels and a greater MMP-9/TIMP-1 ratio compared to COPD GOLD-1-2 patients (P≤0.001).

Conclusion. In patients with COPD, serum MMP-9 and TIMP-1 levels and the MMP-9/TIMP-1 ratio were elevated. In patients with COPD, there was an imbalance between MMP-9 and TIMP-1 in favor of fibrosis, which generally indicates the importance of the MMP-9/TIMP-1 ratio as a potential biomarker for the diagnosis and severity of COPD.

Full Text

Restricted Access

About the authors

L. V. Vasilyeva

Voronezh State Medical University n.a. N.N. Burdenko

Email: suslova_ekaterina2502@mail.ru
ORCID iD: 0000-0002-9900-556X
Russian Federation, Voronezh

E. V. Gosteva

Voronezh State Medical University n.a. N.N. Burdenko

Email: suslova_ekaterina2502@mail.ru
ORCID iD: 0000-0002-8771-2558
Russian Federation, Voronezh

E. Yu. Suslova

Voronezh State Medical University n.a. N.N. Burdenko

Author for correspondence.
Email: suslova_ekaterina2502@mail.ru
ORCID iD: 0000-0002-5407-0384

Cand. Sci. (Med.), Associate Professor at the Department of Propaedeutics of Internal Diseases

Russian Federation, Voronezh

L. R. Elzhurkaeva

Kadyrov Chechen State University

Email: suslova_ekaterina2502@mail.ru
ORCID iD: 0000-0003-2445-6849
Russian Federation, Grozny

М. А. Zolotareva

Voronezh State Medical University n.a. N.N. Burdenko

Email: suslova_ekaterina2502@mail.ru
ORCID iD: 0000-0002-9491-086X
Russian Federation, Voronezh

References

  1. Vogelmeier C.F., Criner G.J., Martinez F.J., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Eur Respir J. 2017;49:3. doi: 10.1183/13993003.00214-2017.
  2. Васильева Л.В., Талыкова М.И., Гостева Е.В. и др. Влияние анемии на течение хронической обструктивной болезни легких. Практическая медицина. 2022;20(7):105–8. [Vasilyeva L.V., Talykova M.I., Gosteva E.V., et al. Influence of anemia on the course of chronic obstructive pulmonary disease. Prakticheskaya Meditsina. 2022;20(7):105–8. doi: 10.32000/2072-1757-2022-7-105-108.
  3. Dimic-Janjic S., Hoda M.A., Milenkovic B., et al. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. Eur J Med Res. 2023;28(1):127. doi: 10.1186/s40001-023-01094-7.
  4. Григоркевич О.С., Мокров Г.В., Косова Л.Ю. Матриксные металлопротеиназы и их ингибиторы. Фармакокинетика и фармакодинамика. 2019;(2):3–16. [Grigorkevich O.S., Mokrov G.V., Kosova L.Yu. Matrix metalloproteinases and their inhibitors. Farmakokinetika i farmakodinamika. 2019;(2):3–16. (In Russ.)]. doi: 10.24411/2587-7836-2019-10040.
  5. Young D., Das N., Anowai A., Dufour A. Matrix metalloproteases as influencers of the cells’ social media. Int J Mol Sci. 2019;20:16. doi: 10.3390/ijms20163847.
  6. Jasper A.E., McIver W.J., Sapey E., Walton G.M. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res. 2019;8:557. doi: 10.12688/f1000research.18411.1.
  7. Михеев А.В., Баскевич М.А. Роль матриксных металлопротеиназ в развитии заболеваний легких. Наука молодых. 2015;1:106–15. [Mikheev A.V., Baskevich M.A. Rol’ matriksnykh metalloproteinaz v razvitii zabolevanii legkikh. Nauka molodykh. 2015;1:106–15. (In Russ)].
  8. Woode D., Shiomi T., D’Armiento J. Collagenolytic matrix metalloproteinases in chronic obstructive lung disease and cancer. Cancers. 2015;7(1):329–41. doi: 10.3390/cancers7010329.
  9. Шадрина А.С. Матриксные металлопротеиназы: структура, функции и генетический полиморфизм. Патогенез. 2017;15(2):14–23. [Shadrina A.S. Matriksnye metalloproteinazy: struktura, funktsii i geneticheskii polimorfizm. Patogenez. 2017;15(2):14–23. (In Russ)]. doi: 10.25557/GM.2017.2.7297.
  10. Цветкова О.А., Воронкова О.О., Буянова О.Е., Дубинин А.О. Металлопротеиназы как биомаркеры прогрессирования хронической обструктивной болезни легких. Пульмонология. 2023;33(1):36–43. [Tsvetkova O.A., Voronkova O.O., Buyanova O.E., Dubinin A.O. Metalloproteinases as biomarkers of chronic obstructive pulmonary disease progression. Рulmonologiya. 2023;33(1):36–43. (In Russ.)]. doi: 10.18093/0869-0189- 2022-2354.
  11. Шадрина А.С., Плиева Я.З., Кушлинский Д.Н. и др. Классификация, регуляция активности, генетический полиморфизм матриксных металлопротеиназ в норме и при патологии. Альманах клинической медицины. 2017;45(4):266–79. [Shadrina A.S., Plieva Ya.Z., Kushlinskiy D.N. Classification, regulation of activity, genetic polymorphism of matrix metalloproteinases in normal and pathological conditions. Al’manakh klinicheskoi meditsiny. 2017;45(4):266–79. (In Russ.)]. doi: 10.18786/2072-0505-2017-45-4-266-279.
  12. O’Donnell D.E., Webb K.A., Neder J.A. Lung hyperinflation in COPD: applying physiology to clinical practice. COPD Res Pract. 2015;1(1):4. doi: 10.1186/s40749-015-0008-8.
  13. Черняк А.В., Савушкина О.И. Спирометрическое исследование в клинической практике. Бюллетень физиологии и патологии дыхания. 2020;(77):125–33. [Cherniak A.V., Savushki-na O.I. Spirometry in clinical practice. Byulleten’ fiziologii i patologii dykhaniya. 2020;(77):125–33. (In Russ.)]. doi: 10.36604/1998-5029-2020-77-125-133.
  14. Milenkovic B., Dimic-Janjic S., Kotur-Stevuljevic J., et al. Validation of serbian version of chronic obstructive pulmonary disease assessment test. VSP. 2020;77(3):294–99. doi: 10.2298/VSP180220094M.
  15. Авдеев С.Н. Профилактика обострений хронической обструктивной болезни легких. Пульмонология. 2016;26(5):591–603. [Аvde- ev S.N. prevention of acute exacerbations of chronic obstructive pulmonary disease. Рulmonologiya. 2016;26(5):591–603. (In Russ.)]. doi: 10.18093/0869-0189-2016-26-5-591-603.
  16. NHIS – Adult Tobacco Use – Glossary. 2019. URL: https://www.cdc.gov/nchs/nhis/tobacco/tobacco glossary.htm
  17. Каменева М.Ю. Новые международные рекомендации по интерпретации легочных функциональных тестов (Часть 1). Медицинский алфавит. 2022;(20):16–22. https://doi.org/10.33667/2078-5631-2022-20-16-22 [Kameneva M.Yu. New international technical standard on interpretive strategies for lung function tests (Part 1). Meditsinskii alfavit. 2022;(20):16–22 (In Russ.)].
  18. Higham A., Dungwa J., Jackson N., et al. Relationships between Airway Remodeling and Clinical Characteristics in COPD Patients. Biomed. 2022;10(8):1992. doi: 10.3390/biomedicines10081992.
  19. Li Y., Lu Y., Zhao Z., et al. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: a systematic review and meta-analysis. J Res Med Sci. 2016;21:12. doi: 10.4103/1735-1995.178737.
  20. Gilowska I., Kasper L., Bogacz K., et al. Impact of matrix metalloproteinase 9 on COPD development in polish patients: genetic polymorphism, protein level, and their relationship with lung function. BioMed Res Int. 2018;2018:6417415. doi: 10.1155/2018/6417415.
  21. Linder R., Ronmark E., Pourazar J., et al. Serum metalloproteinase-9 is related to COPD severity and symptoms-cross-sectional data from a population-based cohort-study. Respir Res. 2015;16(1):28. doi: 10.1186/s12931-015-0188-4.
  22. Arbaningsih S.R., Syarani F., Ganie R.A., et al. The Levels of Vitamin D, Metalloproteinase-9 and Tissue Inhibitor Metalloproteinase-1 in COPD Patients, Healthy Smokers and Non-Smokers of Indonesian Citizens. Open Access Maced J Med Sci. 2019;7(13):2123–26. doi: 10.3889/oamjms.2019.612.
  23. Piesiak P., Brzecka A., Kosacka M., et al. Concentrations of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in serum of patients with chronic obstructive pulmonary disease. Pol Merkur Lekarski. 2011; 31(185):270–73.
  24. Chukowry P.S., Spittle D.A., Turner A.M. Small Airways Disease, Biomarkers and COPD: Where are We? Int J Chron Obstruct Pulmon Dis. 2021;16:351–65. doi: 10.2147/COPD.S280157.
  25. Элоуази С. Исследование биомаркеров для определения риска развития сердечной недостаточности, артериальной гипертензии и хронических болезней легких. Синергия наук. 2018;22:1266–81. [Elouazi S. Study of biomarkers for determining the risk of developing heart failure, arterial hypertension and chronic lung diseases. Sinergiya nauk. 2018;22:1266–81. (In Russ.)].
  26. Ostridge K., Williams N., Kim V., et al. Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax. 2016;71(2):126–32. doi: 10.1136/thoraxjnl-2015-207428.
  27. Sng J.J., Prazakova S., Thomas P.S., Herbert C. MMP-8, MMP-9 and neutrophil elastase in peripheral blood and exhaled breath condensate in COPD. COPD J Chronic Obstr Pulm Dis. 2017;14(2):238–44. doi: 10.1080/15412555.2016.1249790.
  28. Hk K., Y H., Mn L., et al. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J Chron Obstruct Pulmon Dis. 2016;11:1129–37. doi: 10.2147/COPD.S103281.
  29. Wells J.M., Parker M.M., Oster R.A., et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight. 2018;3:22. doi: 10.1172/jci.insight.123614.
  30. Панасенкова Ю.С., Павлюченко И.И., Коков Е.А. и др. Показатели окислительного стресса у пациентов с хронической обструктивной болезнью легких различной степени тяжести в стадии обострения. Кубанский научный медицинский вестник. 2015;4(153):106–8. [Panasenkova Y.S., Pavlyuchenko I.I., Kokov E.A., et al. Indicators of oxidative stress in patients with chronic obstructive pulmonary disease of varying severity in the acute stage. Kubanskii Nauchyi Meditsinskii Vestnik. 2015;4(153):106–8. (In Russ.)].
  31. Невзорова В.А., Тилик Т.В., Гилифанов Е.А. и др. Содержание свободной металлопротеиназы MMP-9 и комплекса MMP-9/TIMP1 в сыворотке крови при стабильном течении хронической обструктивной болезни легких, ассоциированной с ишемической болезнью сердца. Пульмонология 2011;2:75–80. [Nevzorova V.A., Tilik T.V., Gilifanov E.A., et al. Concentration of free metalloproteinase mmp9 and complex mmp-9/timp1 in blood serum in patients with co-existing stable chronic obstructive lung disease and ischemic heart disease. Рulmonologiya. 2011;(2):75–80. (In Russ.)]. doi: 10.18093/0869-0189-2011-0-2-75-80.
  32. Bchir S., Nasr H.B., Bouchet S., et al. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med. 2017;21(7):1280–91. doi: 10.1111/jcmm.13057.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies