Disturbances of the gut microbiota and their correction in patients with oxalate nephrolithiasis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The complex of microorganisms found in the intestine (gut microbiota) influences the pathogenesis of a number of diseases. There are theories that gastrointestinal diseases increase the risk of development and recurrence of urolithiasis. Current evidence presented in this article demonstrates a link between gut microbiota, particularly Oxalobacter formigenes, and the formation of oxalate kidney stones. The connection between inflammatory bowel diseases and the use of antimicrobial drugs with oxalate homeostasis is shown, and ways of correcting the gut microbiota in patients with urolithiasis using diet therapy, probiotics, and fecal microbiota transplantation are analyzed. The article presents research results demonstrating that correction of the gut microbiota can be a therapeutic goal and may become an important component of the complex treatment of nephrolithiasis.

Full Text

Restricted Access

About the authors

N. V. Sturov

Medical Institute, RUDN University

Email: zakhar.ivanov@list.ru
ORCID iD: 0000-0002-3138-8410

Department of General Medical Practice

Russian Federation, Moscow

S. V. Popov

Medical Institute, RUDN University

Email: zakhar.ivanov@list.ru
ORCID iD: 0000-0002-0567-4616

Department of General Medical Practice

Russian Federation, Moscow

Zakhar A. Ivanov

Medical Institute, RUDN University

Author for correspondence.
Email: zakhar.ivanov@list.ru
ORCID iD: 0000-0002-6655-0369

teaching assistant at the Department of General Medical Practice

Russian Federation, Moscow

References

  1. Gadzhiev N., Prosyannikov M., Malkhasyan V., et al. Urolithiasis prevalence in the Russian Federation: analysis of trends over a 15-year period. World J Urol. 2021;39(10):3939–44. doi: 10.1007/s00345-021-03729-y.
  2. Wang W., Fan J., Huang G., et al. L. Prevalence of kidney stones in mainland China: A systematic review. Sci Rep. 2017;7:41630. doi: 10.1038/srep41630.
  3. Monga M., Murphy M.., Paranjpe R., et al. Prevalence of Stone Disease and Procedure Trends in the United States. Urology. 2023;176:63–8. doi: 10.1016/j.urology.2023.03.040.
  4. Tan R.Y.P., Rao N.N., Horwood C.M., et al. Recurrent nephrolithiasis and loss of kidney function: a cohort study. Int Urol Nephrol. 2023;55(6):1539–47. doi: 10.1007/s11255-023-03463-x.
  5. Ziemba J.B., Matlaga B.R. Epidemiology and economics of nephrolithiasis. Investig. Clin Urol. 2017;58(5):299–306. doi: 10.4111/icu.2017.58.5.299.
  6. Ferraro P.M., Taylor E.N., Gambaro G., et al. Dietary and Lifestyle Risk Factors Associated with Incident Kidney Stones in Men and Women. J Urol. 2017;198(4):858–63. doi: 10.1016/j.juro.2017.03.124.
  7. Ferraro P.M., Curhan G.C. Serum Uric Acid and Risk of Kidney Stones. Am J Kidney Dis. 2017;70(2):158–59. doi: 10.1053/j.ajkd.2017.05.004.
  8. Ferraro P.M., Curhan G.C., Gambaro G., et al. Antibiotic Use and Risk of Incident Kidney Stones in Female Nurses. Am J Kidney Dis. 2019;74(6):736–41. doi: 10.1053/j.ajkd.2019.06.005.
  9. Penniston K.L., Sninsky B.C., Nakada S.Y. Preliminary Evidence of Decreased Disease-Specific Health-Related Quality of Life in Asymptomatic Stone Patients. J Endourol. 2016;30(Suppl. 1):S42–5. doi: 10.1089/end.2016.0074.
  10. Ferraro P.M., Bargagli M., Trinchieri A., et al. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets. Nutrients. 2020;12(3):779. doi: 10.3390/nu12030779.
  11. Khan S., Pearle M., Robertson W., et al. Kidney stones. Nat. Rev. Dis. 2016:2:16008. doi: 10.1038/nrdp.2016.8.
  12. Stern J.M., Moazami S., Qiu Y., et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithias. 2016;44(5):399–407. doi: 10.1007/s00240-016-0882-9.
  13. Armalovna A.M., Mirxamidovich S.A., Xiaoxuan L., et al. Review of the Role of Enteral Factor in the Development of Secondary Hyperoxalurian. Int. J. Tropical Dis Health, 2022;43(22):39–45. doi: 10.9734/ijtdh/2022/v43i221366.
  14. Nazzal L., Francois F., Henderson N., et al. Effect of antibiotic treatment on Oxalobacter formigenes colonization of the gut microbiome and urinary oxalate excretion. Sci Rep. 2021;11(1):16428. doi: 10.1038/s41598-021-95992-7.
  15. Viljoen A., Chaudhry R., Bycroft J. Renal stones. Ann Clin Biochem. 2019;56(1):15–27. doi: 10.1177/0004563218781672.
  16. Daniel S.L., Moradi L., Paiste H., et al. Forty Years of Oxalobacter formigenes, a Gutsy Oxalate-Degrading Specialist. Appl Environ Microbiol. 2021;87(18):e00544–21. doi: 10.1128/AEM.00544-21.
  17. Chamberlain C.A., Hatch M., Garrett T.J. Oxalobacter formigenes produces metabolites and lipids undetectable in oxalotrophic Bifidobacterium animalis. Metabolomics. 2020;16(12):122. doi: 10.1007/s11306-020-01747-2.
  18. Jafari G.A., Fotouhi Ardakani R., Akhavan Sepahi M., et al. Development of an Innovative Method by Optimizing qPCR Technique for Isolating and Determining Oxalobacter Formigenes Microbial Load in the Stool of Patients with Urolithiasis. Iran J Kidney Dis. 2021;15(3):190–98.
  19. Chamberlain C.A., Hatch M., Garrett T.J. Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC-HRMS. Anal Bioanal Chem. 2019;411(19):4807–18. doi: 10.1007/s00216-019-01639-y.
  20. Yacoubian A.A., Nasr R. Review of post bariatric surgery effects on common genitourinary physiology. Int Braz J Urol. 2018;44(4):680–87. doi: 10.1590/S1677-5538.IBJU.2017.0416.
  21. Argenzio R.A., Liacos J.A., Allison M.J. Intestinal oxalate-degrading bacteria reduce oxalate absorption and toxicity in guinea pigs. J Nutr. 1988;118(6):787–92. doi: 10.1093/jn/118.6.787.
  22. Arvans D., Jung Y.C., Antonopoulos D., et al. Oxalobacter formigenes-Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells. J Am Soc Nephrol. 2017;28(3):876–87. doi: 10.1681/ASN.2016020132.
  23. Allison M.J., Dawson K.A., Mayberry W.R., et al. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141(1):1–7. doi: 10.1007/BF00446731.
  24. Jafari G.A., Fotouhi Ardakani R., Akhavan Sepahi M., et al. Development of an Innovative Method by Optimizing qPCR Technique for Isolating and Determining Oxalobacter Formigenes Microbial Load in the Stool of Patients with Urolithiasis. Iran J Kidney Dis. 2021;15(3):190–98.
  25. Mehta M., Goldfarb D.S., Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg. 2016;36(Pt. D):607–12. doi: 10.1016/j.ijsu.2016.11.024.
  26. Sidhu H., Hoppe B., Hesse Albrecht. Clinical significance of Oxalobacter formigenes: Colonization studies in patients with cystic fibrosis, inflammatory bowel disease and calcium-oxalate urolithiasis. Urolithiasis 2000: Proceedings of the 9th International Symposium on Urolithiasis. 2000;2:468–73.
  27. Kaufman D.W., Kelly J.P., Curhan G.C., et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19(6):1197–203. doi: 10.1681/ASN.2007101058.
  28. Siener R., Bangen U., Sidhu H., et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013;83(6):1144–49. doi: 10.1038/ki.2013.104.
  29. Liu M., Zhang Y., Wu J., et al. Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study. Front Microbiol. 2023;14:1204311. doi: 10.3389/fmicb.2023.1204311.
  30. Ravikumar Y., Begum R.F., Velmurugan R. Oxalobacter formigenes reduce the risk of kidney stones in patients exposed to oral antibiotics: a case-control study. Int Urol Nephrol. 2021;53(1):13–20. doi: 10.1007/s11255-020-02627-3.
  31. Kharlamb V., Schelker J., Francois F., et al. Oral antibiotic treatment of Helicobacter pylori leads to persistently reduced intestinal colonization rates with Oxalobacter formigenes. J Endourol. 2011;25(11):1781–85. doi: 10.1089/end.2011.0243.
  32. PeBenito A., Nazzal L., Wang C., et al. Comparative prevalence of Oxalobacter formigenes in three human populations. Sci Rep. 2019;9(1):574. doi: 10.1038/s41598-018-36670-z.
  33. Lange J.N., Wood K.D., Wong H., et al. Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. Urology. 2012;79(6):1286–89. doi: 10.1016/j.urology.2011.11.017.
  34. Joshi S., Goldfarb D.S. The use of antibiotics and risk of kidney stones. Curr Opin Nephrol Hypertens. 2019;28(4):311–15. doi: 10.1097/MNH.0000000000000510.
  35. Tasian G.E., Jemielita T., Goldfarb D.S., et al. Oral Antibiotic Exposure and Kidney Stone Disease. J Am Soc Nephrol. 2018;29(6):1731–40. doi: 10.1681/ASN.2017111213.
  36. Liu M., Devlin J.C., Hu J., et al. Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease. Elife. 2021;10:e63642. doi: 10.7554/eLife.63642.
  37. Nazzal L., Blaser M.J. Does the Receipt of Antibiotics for Common Infectious Diseases Predispose to Kidney Stones? A Cautionary Note for All Health Care Practitioners. J Am Soc Nephrol. 2018;29(6):1590–92. doi: 10.1681/ASN.2018040402.
  38. Sidhu H., Allison M.J., Chow J.M., et al. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol. 2001;166(4):1487–91.
  39. Hiremath S., Viswanathan P. Oxalobacter formigenes: A new hope as a live biotherapeutic agent in the management of calcium oxalate renal stones. Anaerobe. 2022;75:102572. doi: 10.1016/j.anaerobe.2022.102572.
  40. Ariceta G., Collard L., Abroug S., et al. ePHex: a phase 3, double-blind, placebo-controlled, randomized study to evaluate long-term efficacy and safety of Oxalobacter formigenes in patients with primary hyperoxaluria. Pediatr Nephrol. 2023;38(2):403–15. doi: 10.1007/s00467-022-05591-5.
  41. Jairath A., Parekh N., Otano N., et al. Oxalobacter formigenes: Opening the door to probiotic therapy for the treatment of hyperoxaluria. Scand. J Urol. 2015;49(4):334–37. doi: 10.3109/21681805.2014.996251.
  42. Lieske J.C., Tremaine W.J., De Simone C., et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010;78(11):1178–85. doi: 10.1038/ki.2010.310.
  43. Okombo J., Liebman M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol Res. 2010;38(3):169–78. doi: 10.1007/s00240-010-0262-9.
  44. Tavasoli S., Jalali S., Naji M., et al. Effect of a Probiotic Supplement Containing Lactobacillus Acidophilus and Bifidobacterium Animalis Lactis on Urine Oxalate in Calcium Stone Formers with Hyperoxaluria: A Randomized, Placebo-controlled, Double-blind and In-vitro Trial. Urol J. 2021;19(3):179–88. Foi: 10.22037/uj.v18i.6789.
  45. Peck A.B., Canales B.K., Nguyen C.Q. Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease? Urolithias. 2016;44(1):45–50. doi: 10.1007/s00240-015-0845-6.
  46. Stern J.M., Urban-Maldonado M., Usyk M., et al. Fecal transplant modifies urine chemistry risk factors for urinary stone disease. Physiol Rep. 2019;7(4):e14012. doi: 10.14814/phy2.14012.
  47. Miller A.W., Oakeson K.F., Dale C., et al. Microbial Community Transplant Results in Increased and Long-Term Oxalate Degradation. Microb Ecol. 2016;72(2):470–78. doi: 10.1007/s00248-016-0800-2.
  48. Wang Y., Sun J., Xie S., et al. Increased abundance of bacteria of the family Muribaculaceae achieved by fecal microbiome transplantation correlates with the inhibition of kidney calcium oxalate stone deposition in experimental rats. Front. Cell Infect Microbiol. 2023;13:1145196. doi: 10.3389/fcimb.2023.1145196.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (86KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies