Cold season: the potential of vitamin-mineral complexes in the prevention and treatment of acute respiratory viral infections

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Acute viral infections are widespread poorly controlled diseases, which are characterized by a moderately pronounced constant increase in morbidity. On average, an adult suffers from 2 to 4 colds during the year, a child gets sick from 6 to 9 times. The use of vitamin-mineral complexes (nutraceuticals) for nonspecific prevention and treatment of acute respiratory viral infections (ARVI) is experiencing a “second youth” due to new data accumulated during the novel coronavirus infection (COVID-19) pandemic. As part of the review, we examined the possible impact of a deficiency of the zinc, selenium and vitamins A, C, E on various aspects of the course of ARVI: nonspecific prevention, treatment and rehabilitation. We searched for relevant sources in the PubMed and Scopus information databases, including the time period up to 02/29/2024. The data presented in the review allow to recommend determining the of selenium, zinc, vitamins A, C, E levels in patients of this category, and if their reduced levels are detected, it is advisable to consider the prescribing vitamin-mineral complexes in order to eliminate the deficiency of basic micronutrients. The presence of 2 forms of the vitamin-mineral complex Selzinc®, Selzinc Plus® and Selzinc Ultra Flu®, in the practitioner’s arsenal at the outpatient stage of medical care will improve the effectiveness of treatment, as well as prevention and rehabilitation of patients with acute respiratory viral infections during the cold season.

全文:

受限制的访问

作者简介

Dmitry Trukhan

Omsk State Medical University

编辑信件的主要联系方式.
Email: dmitry_trukhan@mail.ru
ORCID iD: 0000-0002-1597-1876

Dr. Sci. (Med.), Associate Professor, Professor at the Department of Outpatient Therapy and Internal Medicine

俄罗斯联邦, Omsk

M. Rozhkova

Omsk State Medical University

Email: dmitry_trukhan@mail.ru
ORCID iD: 0000-0002-7695-149X
俄罗斯联邦, Omsk

D. Ivanova

Omsk State Medical University

Email: dmitry_trukhan@mail.ru
ORCID iD: 0000-0002-4145-7969
俄罗斯联邦, Omsk

V. Goloshubina

Omsk State Medical University

Email: dmitry_trukhan@mail.ru
ORCID iD: 0000-0003-1481-8842
俄罗斯联邦, Omsk

参考

  1. Клинические рекомендации. Острые респираторные вирусные инфекции (ОРВИ) у взрослых. 2021. [Clinical recommendations. Acute respiratory viral infections (ARVI) in adults. 2021. (In Russ.)]. URL: https://cr.minzdrav.gov.ru/recomend/724_1
  2. Клинические рекомендации. Острая респираторная вирусная инфекция (ОРВИ). 2021. [Clinical recommendations. Acute respiratory viral infection (ARVI). 2021. (In Russ.)]. URL: https://cr.minzdrav.gov.ru/recomend/25_2
  3. Трухан Д.И., Филимонов С.Н. Дифференциальный диагноз основных пульмонологических симптомов и синдромов. Санкт-Петербург: СпецЛит, 2019. 176 с. [Trukhan D. I., Filimonov S. N. Differential diagnosis of main pulmonary symptoms and syndromes. Saint Petersburg: SpeczLit, 2019. 176 р. (In Russ.)].
  4. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1–2):136–45. [Trukhan D.I., Viktorova I.A., Ivanova D.S., Goloshubina V.V. Acute respiratory viral infections: possibilities of vitamin and mineral complexes in treatment, prevention and rehabilitation. Farmateka. 2023;30(1–2):136–45. (In Russ.)]. doi: 10.18565/pharmateca.2023.1-2.136-145.
  5. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371–82. doi: 10.1177/0884533615570376.
  6. Shankar A.H., Prasad A.S. Zinc and immune function: the biological basis of altered resistance to infection. Am J ClinNutr. 1998;68(Suppl. 2):447S–63. doi: 10.1093/ajcn/68.2.447S.
  7. Overbeck S., Rink L., Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch. Immunol TherExp. (Warsz). 2008;56(1):15–30. doi: 10.1007/s00005-008-0003-8.
  8. Wessels I., Maywald M., Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017;9(12):1286. doi: 10.3390/nu9121286.
  9. Jarosz M., Olbert M., Wyszogrodzka G., et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacol. 2017;25(1):11–24. doi: 10.1007/s10787-017-0309-4.
  10. Kirkil G., Hamdi Muz M., Seckin D., et al. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med. 2008;102(6):840–44. doi: 10.1016/j.rmed.2008.01.010.
  11. Samad N., Sodunke T.E., Abubakar A.R., et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res. 2021;14:527–50. doi: 10.2147/JIR.S295377.
  12. Li J., Cao D., Huang Y., et al. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr. 2022;9:798078. doi: 10.3389/fnut.2022.798078.
  13. Bao S., Knoell D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol. 2006;291(6):L1132–41.doi: 10.1152/ajplung.00207.2006.
  14. Vlieg-Boerstra B., de Jong N., Meyer R., et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy. 2022;77(5):1373–88. doi: 10.1111/all.15136.
  15. Kaushik N., Subramani C., Anang S., et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. 2017;91(21):e00754–17. doi: 10.1128/JVI.00754-17.
  16. Corrao S., Mallaci Bocchio R., Lo Monaco M., et al. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients. 2021;13(4):1261. doi: 10.3390/nu13041261.
  17. Patel O., Chinni V., El-Khoury .J, et al. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. JMed. Virol. 2021;93(5):3261–7.
  18. Scarpellini E., Balsiger L.M., Maurizi V., et al. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. Biofactors. 2022;48(2):294–306. doi: 10.1002/biof.1829.
  19. Skalny A.V., Rink L., Ajsuvakova O.P., et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). IntJ. Mol Med. 2020;46(1):17–26. doi: 10.3892/ijmm.2020.4575.
  20. Han Y.S., Chang G.G., Juo C.G., et al. Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition. Biochem. 2005;44(30):10349–59. doi: 10.1021/bi0504761.
  21. Jothimani D., Kailasam E., Danielraj S., et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343–9. doi: 10.1016/j.ijid.2020.09.014.
  22. Wessels I., Rolles B., Rink L. The Potential Impact of Zinc Supplementation on COVID-19. Pathogenesis. Front Immunol. 2020;11:1712. doi: 10.3389/fimmu.2020.01712.
  23. Tomasa-Irriguible T.-M., Bielsa-Berrocal L., Bordeje-Laguna L., et al. Low levels of few micronutrients may impact COVID-19 disease progression: an observational study on the first wave. Metabol. 2021;11(9):565. doi: 10.3390/metabo11090565.
  24. Wessels I., Rolles B., Slusarenko A.J., Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr. 2022;127(2):214–32. doi: 10.1017/S0007114521000738.
  25. Трухан Д.И. Новая коронавирусная инфекция (COVID-19) и заболевания/патологические состояния органов дыхания. Медицинский совет. 2022;16(18):154–61. [Trukhan D.I. New coronavirus infection (COVID-19) and respiratory diseases/pathological conditions. Meditsinskiy sovet=Medical Council. 2022;16(18):154-161. (In Russ.)]. doi: 10.21518/2079-701X-2022-16-18-154-161.
  26. Tabatabaeizadeh S.A. Zinc supplementation and COVID-19 mortality: a meta-analysis. Eur J Med Res. 2022;27(1):70. doi: 10.1186/s40001-022-00694-z.
  27. Rahman M.T., Idid S.Z. Can Zn Be a Critical Element in COVID-19 Treatment? Biol Trace Elem Res. 2021;199(2):550–8. doi: 10.1007/s12011-020-02194-9.
  28. de Almeida Brasiel P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN. 2020;38:65–6. doi: 10.1016/j.clnesp.2020.06.003.
  29. Hunter J., Arentz S., Goldenberg J., et al. Zinc for the prevention or treatment of acute viral respiratory tract infections in adults: a rapid systematic review and meta-analysis of randomised controlled trials. BMJ. Open. 2021;11(11):e047474. doi: 10.1136/bmjopen-2020-047474.
  30. Marreiro D.D.N., Cruz K.J.C., Oliveira A.R.S., et al. Antiviral and immunological activity of zinc and possible role in COVID-19. Br J Nutr. 2022;127(8):1172–79. doi: 10.1017/S0007114521002099.
  31. Martinez S.S., Huang Y., Acuna L., et al. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int J Mol Sci. 2021;23(1):280. doi: 10.3390/ijms23010280.
  32. Barchielli G., Capperucci A., Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel). 2022;11(2):251. doi: 10.3390/antiox11020251.
  33. Moghaddam A., Heller R.A., Sun Q., et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. doi: 10.3390/nu12072098.
  34. Bae M., Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules. 2020;25(22):5346. doi: 10.3390/molecules25225346.
  35. Duntas L.H., Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756–75. doi: 10.1007/s12020-014-0477-6.
  36. Beck M.A., Nelson H.K., Shi Q., et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001;15(8):1481–83.
  37. Taylor E.W., Radding W. Understanding selenium and glutathione as antiviral factors in COVID-19: does the viral Mpro protease target host selenoproteins and glutathione synthesis? Front Nutr. 2020;7:143. doi: 10.3389/fnut.2020.00143.
  38. Khatiwada S., Subedi A. A mechanistic link between selenium and coronavirus disease 2019 (COVID-19). Curr Nutr Rep. 2021;10(2):125–36. doi: 10.1007/s13668-021-00354-4.
  39. Avery J.C., Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. doi: 10.3390/nu10091203.
  40. Seale L.A., Torres D.J., Berry M.J., Pitts M.W. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence. Am J Clin Nutr. 2020;112:447–48. doi: 10.1093/ajcn/nqaa177.
  41. Laforge M., Elbim C., Frere C., et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515–16. doi: 10.1038/s41577-020-0407-1.
  42. Bermano G., Meplan C., Mercer D.K., Hesketh J.E. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618–27. doi: 10.1017/S0007114520003128.
  43. Tomo S., Saikiran G., Banerjee M., Paul S. Selenium to selenoproteins - role in COVID-19. EXCLI J. 2021;20:781–91. doi: 10.17179/excli2021-3530.
  44. Schomburg L. Selenium Deficiency in COVID-19-A Possible Long-Lasting Toxic Relationship. Nutrients. 2022;14(2):283. doi: 10.3390/nu14020283.
  45. Schomburg L. Selenoprotein P – Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med. 2022;191:150–63. doi: 10.1016/j.freeradbiomed.2022.08.022.
  46. Lima L.W., Nardi S., Santoro V., Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel). 2021;10(7):1031. doi: 10.3390/antiox10071031.
  47. Im J.H., Je Y.S., Baek J., et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;100:390–93. doi: 10.1016/j.ijid.2020.08.018.
  48. Younesian O., Khodabakhshi B., Abdolahi N., et al. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol Trace Elem Res. 2021:1–6. doi: 10.1007/s12011-021-02797-w.
  49. Rayman M.P., Taylor E.W., Zhang J. The relevance of selenium to viral disease with special reference to SARS-CoV-2 and COVID-19. Proc Nutr Soc. 2022:1–12. doi: 10.1017/S0029665122002646.
  50. Kieliszek M., Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878.
  51. Liu X., Yin S., Li G. Effects of selenium supplement on acute lower respiratory tract infection caused by respiratory syncytial virus. Zhonghua Yu Fang Yi Xue Za Zhi. 1997;31(6):358–61.
  52. Oliveira C.R., Viana E.T., Goncalves T.F., et al. Therapeutic use of intravenous selenium in respiratory and immunological diseases: evidence based on reviews focused on clinical trials. Adv Respir Med. 2022 Jan 31. doi: 10.5603/ARM.a2022.0018.
  53. Taheri S., Asadi S., Nilashi M., et al. A literature review on beneficial role of vitamins and trace elements: Evidence from published clinical studies. J Trace Elem Med Biol. 2021;67:126789. doi: 10.1016/j.jtemb.2021.126789.
  54. Junaid K., Ejaz H., Abdalla A.E., et al. Effective Immune Functions of Micronutrients against SARS-CoV-2. Nutrients. 2020;12(10):2992. doi: 10.3390/nu12102992.
  55. Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ. J. Basic Appl. Sci. 2021;10(1):33. doi: 10.1186/s43088-021-00123-w.
  56. Engin A.B., Engin E.D., Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol. 2022;95:103937. doi: 10.1016/j.etap.2022.103937.
  57. Alexander J., Tinkov A., Strand T.A., et al. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients. 2020;12(8):2358. doi: 10.3390/nu12082358.
  58. Huang Z., Liu Y., Qi G., et al. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258. doi: 10.3390/jcm7090258.
  59. Stephensen C.B., Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr. 2021;126(11):1663–72. doi: 10.1017/S0007114521000246.
  60. Elmadfa I., Meyer A.L. The role of the status of selected micronutrients in shaping the immune function. Endocr Metab Immun Disord Drug Targets. 2019;19:1100–15. doi: 10.2174/1871530319666190529101816.
  61. Diyya A.S.M., Thomas N.V. Multiple Micronutrient Supplementation: As a Supportive Therapy in the Treatment of COVID-19. BiomedRes. Int. 2022;2022:3323825. doi: 10.1155/2022/3323825.
  62. Tepasse P.R., Vollenberg R., Fobker M., et al. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients. 2021;13(7):2173. doi: 10.3390/nu13072173.
  63. Zhang Y., Du Z., Ma W., et al. Vitamin A status and recurrent respiratory infection among Chinese children: a nationally representative survey. Asia Pac J Clin Nutr. 2020;29:566–76. doi: 10.6133/apjcn.202009_29(3).0016.
  64. Abdelkader A., Wahba A.A., El-Tonsy M., et al. Recurrent respiratory infections and vitamin A levels: a link? It is cross-sectional. Medicine (Baltimore). 2022;101(33):e30108. doi: 10.1097/MD.0000000000030108.
  65. Park J.H., Lee Y., Choi M., Park E. The Role of Some Vitamins in Respiratory-related Viral Infections: A Narrative Review. Clin Nutr Res. 2023;12(1):77–89. doi: 10.7762/cnr.2023.12.1.77.
  66. Figueroa-Méndez R., Rivas-Arancibia S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol. 2015;6:397. doi: 10.3389/fphys.2015.00397.
  67. Abioye A.I., Bromage S., Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ. Glob Health. 2021;6(1):e003176. doi: 10.1136/bmjgh-2020-003176.
  68. Van Straten M., Josling P. Preventing the common cold with a vitamin C supplement: a double-blind, placebo-controlled survey. Adv Ther. 2002;19:151–59. doi: 10.1007/BF02850271.
  69. Johnston C.S., Barkyoumb G.M., Schumacher S.S. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: a randomized controlled trial. Nutrients. 2014;6:2572–83. doi: 10.3390/nu6072572.
  70. Kim T.K., Lim H.R., Byun J.S. Vitamin C supplementation reduces the odds of developing a common cold in Republic of Korea Army recruits: randomised controlled trial. BMJ. Mil Health. 2022;168:117–23. doi: 10.1136/bmjmilitary-2019-001384.
  71. Hemila H., Douglas R.M. Vitamin C and acute respiratory infections. Int J Tuberc Lung Dis. 1999;3(9):756–61.
  72. Hemila H. Vitamin C and common cold incidence: a review of studies with subjects under heavy physical stress. Int J Sports Med. 1996;17(5):379–83. doi: 10.1055/s-2007-972864.
  73. Swain R.A., Kaplan B. Upper respiratory infections: treatment selection for active patients. Phys Sportsmed. 1998;26(2):85–96. doi: 10.3810/psm.1998.02.944.
  74. Khaw K.T., Woodhouse P. Interrelation of vitamin C, infection, haemostatic factors, and cardiovascular disease. BMJ. 1995;310(6994):1559–63. doi: 10.1136/bmj.310.6994.1559.
  75. Shahbaz U., Fatima N., Basharat S., et al. Role of vitamin C in preventing of COVID-19 infection, progression and severity. AIMS Microbiol. 2022;8(1):108–24. doi: 10.3934/microbiol.2022010.
  76. Ebrahimzadeh-Attari V., Panahi G., Hebert J.R., et al. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect. 2021;11(2):119–36. doi: 10.34172/hpp.2021.17.
  77. Schloss J., Lauche R., Harnett J., et al. Efficacy and safety of vitamin C in the management of acute respiratory infection and disease: A rapid review. Adv Integr Med. 2020;7(4):187–91. doi: 10.1016/j.aimed.2020.07.008.
  78. Ran L., Zhao W., Wang J., et al. Extra Dose of Vitamin C Based on a Daily Supplementation Shortens the Common Cold: A Meta-Analysis of 9 Randomized Controlled Trials. Biomed Res Int. 2018;2018:1837634. doi: 10.1155/2018/1837634.
  79. Hemilä H., Chalker E. Vitamin C reduces the severity of common colds: a meta-analysis. BMC. Public Health. 2023;23(1):2468. doi: 10.1186/s12889-023-17229-8.
  80. Abobaker A., Alzwi A., Alraied A.H.A. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020;72(6):1517–28. doi: 10.1007/s43440-020-00176-1.
  81. Uddin M.S., Millat M.S., Baral P.K., et al. The protective role of vitamin C in the management of COVID-19: A Review. J Egypt Public Health Assoc. 2021;96(1):33. doi: 10.1186/s42506-021-00095-w.
  82. Iddir M., Brito A., Dingeo G., et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562. doi: 10.3390/nu12061562.
  83. Tavakol S., Seifalian A.M. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol Appl Biochem. 2021:10.1002/bab.2176. doi: 10.1002/bab.2176.
  84. Lai Y.J., Chang H.S., Yang Y.P., et al. The role of micronutrient and immunomodulation effect in the vaccine era of COVID-19. J ChinMed. Assoc. 2021;84(9):821–26. doi: 10.1097/JCMA.0000000000000587.
  85. Meydani S.N., Leka L.S., Fine B.C., et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. JAMA. 2004;292:828–36. doi: 10.1001/jama.292.7.828.
  86. Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12(4):1181. doi: 10.3390/nu12041181.
  87. Alkhatib A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients. 2020;12(9):2633. doi: 10.3390/nu12092633.
  88. Pecora F., Persico F., Argentiero A., et al. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. doi: 10.3390/nu12103198.
  89. Jayawardena R., Sooriyaarachchi P., Chourda- kis M., et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diab Metab Syndr. 2020;14(4):367–82. doi: 10.1016/j.dsx.2020.04.015.
  90. Di Renzo L., Gualtieri P., Pivari F., et al. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med. 2020;18(1):415. doi: 10.1186/s12967-020-02594-4.
  91. Zelka F.Z., Kocatürk R.R., Özcan Ö.Ö., et al. Can Nutritional Supports Beneficial in Other Viral Diseases Be Favorable for COVID-19? Korean J Fam Med. 2022;43(1):3–15. doi: 10.4082/kjfm.20.0134.
  92. Calder P.C. Nutrition, immunity and COVID-19. BMJ. Nutr Prev Health. 2020;3(1):74–92. doi: 10.1136/bmjnph-2020-00008593. Shakoor H., Feehan J., Al Dhaheri A.S., et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1–9. doi: 10.1016/j.maturitas.2020.08.003.
  93. Kumar P., Kumar M., Bedi O., et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacol. 2021:1–16. doi: 10.1007/s10787-021-00826-7.
  94. Galmés S., Serra F., Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients. 2020;12(9):2738. doi: 10.3390/nu12092738.
  95. Cámara M., Sánchez-Mata M.C., Fernández-Ruiz V., et al. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods. 2021;10(5):1088. doi: 10.3390/foods10051088.
  96. Dharmalingam K., Birdi A., Tomo S., et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem. 2021:1–11. doi: 10.1007/s12291-021-00961-6.
  97. Гриневич В.Б., Губонина И.В., Дощицин В.Л. и др. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус 2020. Кардиоваскулярная терапия и профилактика. 2020;19(4):2630. [Grinevich V.B., Gubonina I.V., Doshhicin V.L. et al. Features of the management of comorbid patients during the novel coronavirus infection (COVID-19) pandemic. National Consensus 2020. Cardiovasc Ter Profil. 2020;19(4):2630. (In Russ.)]. doi: 10.15829/1728-8800- 2020-2630.
  98. Трухан Д.И, Тарасова Л.В. Особенности клиники и лечения острых респираторных вирусных инфекций в практике врача-терапевта. Врач. 2014;8: 44–7. [Trukhan D.I, Tarasova L.V. Features of the clinic and treatment of acute respiratory viral infections in the practice of a general practitioner. Vrach. 2014;8:44–7. (In Russ.)].
  99. Трухан Д.И., Мазуров А.Л., Речапова Л.А. Острые респираторные вирусные инфекции: актуальные вопросы диагностики, профилактики и лечения в практике терапевта. Терапевтический архив. 2016;11:76–82. [Trukhan D.I., Mazurov A.L., Rechapova L.A. Acute respiratory viral infections: current issues of diagnosis, prevention and treatment in the practice of a therapist. Ter Arkhiv. 2016;11:76–82. (In Russ.)]. doi: 10.17116/terarkh2016881176-82.
  100. Трухан Д.И., Давыдов Е.Л. Место и роль терапевта и врача общей практики в курации коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19): акцент на неспецифическую профилактику. Фарматека. 2021;10:34–45. [Trukhan D.I., Davydov E.L. The place and role of a therapist and general practitioner in the management of comorbid patients during the pandemic of the new coronavirus infection (COVID-19): an emphasis on non-specific prevention. Farmateka. 2021;28(10):34–45. (In Russ.)]. doi: 10.18565/pharmateca.2021.10.34-45.
  101. Трухан Д.И., Давыдов Е.Л., Чусова Н.А., Чусов И.С. Возможности терапевта в профилактике и на реабилитационном этапе после новой коронавирусной инфекции (COVID-19) коморбидных пациентов с артериальной гипертензией. Клинический разбор в общей медицине. 2021;5:6–15. [Trukhan D.I., Davydov E.L., Chusova N.A., Chusov I.S. Opportunities of the therapist in prevention and at the rehabilitation stage after new coronaviral infection (COVID-19) in comorbid patients with arterial hypertension. Clin Rev General Pract. 2021;5:6–15. (In Russ.)]. doi: 10.47407/kr2021.2.5.00064.
  102. Трухан Д.И., Давыдов Е.Л., Чусова Н.А. Нутрицевтики в профилактике, лечении и на этапе реабилитации после новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2021;7:21–34. [Trukhan D.I., Davydov E.L., Chusova N.A. Nutriceutics in prevention, treatment and at the stage of rehabilitation after new coronavirus infection (COVID-19). Clin Rev General Pract. 2021;7:21–34. (In Russ.)]. doi: 10.47407/kr2021.2.7.00085.
  103. Трухан Д.И., Турутина Н.М. Витаминно-минеральные комплексы в лечении острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2022;6:52–60. [Trukhan D.I., Turutina N.M. Vitamin and mineral complexes in the treatment of acute respiratory viral infections. Clin Rev General Pract. 2022;6:52–60. (In Russ.)]. doi: 10.47407/kr2022.3.6.00177.
  104. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1–2):136–45. [Trukhan D.I., Viktorova I.A., Ivanova D.S., Goloshubina V.V. Acute respiratory viral infections: possibilities of vitamin and mineral complexes in treatment, prevention and rehabilitation. Farmateka. 2023;30(1–2):136–45. (In Russ.)]. doi: 10.18565/pharmateca.2023.1-2. 136-145.
  105. Попова Е.Н., Пономарева Л.А., Чинова А.А., Андрианов А.И. Комплексный подход к терапии острых респираторных вирусных инфекций. Клинический разбор в общей медицине. 2023;4(8):42–5. [Popova E.N., Ponoma- reva L.A., Chinova A.A., Andrianov A.I. Multifaceted approach to treatment of acute respiratory viral infections. Clin Rev General Pract. 2023;4(8):42–5. (In Russ.)]. doi: 10.47407/kr2023.4.8.00330.
  106. Попова Е.Н., Митькина М.И., Чинова А.А., Пономарева Л.А. Роль витаминов и микроэлементов в профилактике и лечении бронхолегочных заболеваний у взрослых. Клинический разбор в общей медицине. 2023;4(2):36–42. [Popova E.N., Mitkina M.I., Chinova A.A., Ponomareva L.A. The role of vitamins and minerals in prevention and treatment of bronchopulmonary diseases in adults. Clin Rev General Pract. 2023;4(2):36–42. (In Russ.)]. doi: 10.47407/kr2023.4.2.00202.
  107. Трухан Д.И., Давыдов Е.Л. Место и роль терапевта и врача общей практики в курации коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19): акцент на неспецифическую профилактику. Фарматека. 2021;28(10):34–45. [Trukhan D.I., Davydov E.L. The place and role of a therapist and general practitioner in the management of comorbid patients during the pandemic of the new coronavirus infection (COVID-19): an emphasis on non-specific prevention. Farmateka. 2021;28(10):34–45. (In Russ.)]. doi: 10.18565/pharmateca.2021.10.34-45.
  108. Трухан Д.И. Коморбидный пациент на терапевтическом приеме в период пандемии COVID-19. Актуальные аспекты реабилитационного периода. Фарматека. 2022;29(13):15–24. [Trukhan D.I. A comorbid patient at a therapeutic reception during the COVID-19 pandemic. current aspects of the rehabilitation period. Farmateka. 2022;29(13):15–24. (In Russ.)]. doi: 10.18565/pharmateca.2022.13.15-24.
  109. Трухан Д.И., Иванова Д.С. Витаминно-минеральные комплексы в профилактике, лечении и на этапе реабилитации после острых респираторных вирусных инфекций и новой коронавирусной инфекции (COVID-19). Клинический разбор в общей медицине. 2022;5:33–46. [Trukhan D.I., Ivanova D.S. Vitamin and mineral complexes in prevention, treatment and rehabilitation after acute respiratory viral infections and new coronavirus infection (COVID-19). Clin Rev General Pract. 2022;5:33–46. (In Russ.)]. doi: 10.47407/kr2022.3.5.00160.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2024
##common.cookie##