Disturbance of the gut microbiota and its correction in patients with chronic prostatitis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review article is devoted to the evaluation of the relationship between chronic prostatitis and the state of the gut microbiota (GM). Chronic prostatitis is a common disease that leads to noticeable impairments in quality of life. The etiology and pathophysiological mechanisms of development of this disease remain incompletely disclosed today. Some cases of chronic prostatitis are caused by a bacterial infection, and altered GM may be the source of infection. Most cases of this disease are associated with a chronic inflammatory response, the exact mechanisms and origin of which still remain unclear. However, the role of GM and intestinal dysbiosis in the pathogenesis of this disease seems to be a poorly studied area. This article examines the putative bidirectional relationship between changes in GM composition and the development of chronic prostatitis. In recent decades, scientific research has increasingly paid attention to the role of GM in maintaining immunological balance and regulating inflammatory processes, which can also play a key role in the development and chronicity of prostatitis. At the same time, therapeutic approaches that take into account the need for correction of GM in chronic prostatitis also seem to be a relevant area of research. The use of probiotics or rapeseed pollen can help correct the condition of GM and reduce the activity of the inflammatory process in the prostate gland, as well as reduce the frequency of relapses of chronic prostatitis. New studies also indicate the potential for predicting the development of chronic prostatitis based on GM status. Identification of specific bacterial species or metabolites that may be associated with susceptibility to chronic prostatitis opens up prospects for the development of new diagnostic methods and prognostic approaches. This may provide the basis for personalized disease prevention strategies that take into account the individual characteristics of GM and the immunological status of patients. The article analyzes data on the role of GM in the pathogenesis of chronic prostatitis and identifies possible directions for future research. The presented review offers a new look at this problem and substantiates the importance of further research in this area for the development of effective methods for the prevention and treatment of chronic prostatitis.

Full Text

Restricted Access

About the authors

N. V. Sturov

Peoples’ Friendship University of Russia n.a. Patrice Lumumba

Email: andrey_mikhaylov77@bk.ru
ORCID iD: 0000-0002-3138-8410

Department of General Medical Practice, Medical Institute

Russian Federation, Moscow

S. V. Popov

Peoples’ Friendship University of Russia n.a. Patrice Lumumba

Email: andrey_mikhaylov77@bk.ru
ORCID iD: 0000-0002-0567-4616

Department of General Medical Practice, Medical Institute

Russian Federation, Moscow

Andrey A. Mikhailov

Peoples’ Friendship University of Russia n.a. Patrice Lumumba

Author for correspondence.
Email: andrey_mikhaylov77@bk.ru
ORCID iD: 0009-0008-5751-4383

Teaching Assistant at the Department of General Medical Practice, Medical Institute

Russian Federation, Moscow

V. A. Zhukov

Peoples’ Friendship University of Russia n.a. Patrice Lumumba

Email: andrey_mikhaylov77@bk.ru
ORCID iD: 0000-0001-9995-264X

Department of General Medical Practice, Medical Institute

Russian Federation, Moscow

References

  1. Кадыров З.А., Степанов В.С., Рамишвили Ш.В., Машанеишвили Ш.Г. Диагностика хронического абактериального простатита. Андрология и генитальная хирургия 2019;20(3):00–00. [Kadyrov Z.А., Stepanov V.S., Ramishvili Sh.V., Mashaneishvili Sh.G. Diagnostics of chronic nonbacterial prostatitis. Andrologiya i genital’naya khirurgiya=Andrology and Genital Surgery 2019;20(3):00–00.(In Russ.)]. doi: 10.17650/2070-9781-2019-20-3-00-00.
  2. Rees J., Abrahams M., Doble A., Cooper A. Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline. BJU Int. 2015;116(4):509–25. doi: 10.1111/bju.13101.
  3. He H., Luo H., Xu H., et al. Preclinical models and evaluation criteria of prostatitis. Front Immunol. 2023;14:1183895. doi: 10.3389/fimmu.2023.1183895.
  4. Khattak A.S., Raison N., Hawazie A., et al. Contemporary Management of Chronic Prostatitis. Cureus. 13(12):e20243. doi: 10.7759/cureus.20243.
  5. Krieger J.N., Nyberg L., Nickel J.C. NIH consensus definition and classification of prostatitis. JAMA. 1999;282(3):236–37. doi: 10.1001/jama.282.3.236.
  6. Cai T., Bjerklund Johansen T.E. Prostatitis and Its Management. Springer International Publishing; 2016. doi: 10.1007/978-3-319-25175-2.
  7. Xiong S., Liu X., Deng W., et al. Pharmacological Interventions for Bacterial Prostatitis. Frontiers in Pharmacology. 2020;11. doi: 10.3389/fphar.2020.00504.
  8. Kim D.S., Lee J.W. Urinary Tract Infection and Microbiome. Diagnostics (Basel). 2023;13(11):1921. doi: 10.3390/diagnostics13111921.
  9. Mestrovic T., Matijasic M., Peric M., et al. The Role of Gut, Vaginal, and Urinary Microbiome in Urinary Tract Infections: From Bench to Bedside. Diagnostics (Basel). 2020;11(1):7. doi: 10.3390/diagnostics11010007.
  10. Magruder M., Sholi A.N., Gong C., et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun. 2019;10:5521. doi: 10.1038/s41467-019-13467-w.
  11. Sturov N.V., Popov S.V., Zhukov V.A., et al. Intestinal Microbiota Correction in the Treatment and Prevention of Urinary Tract Infection. Turk J Urol. 2022;48(6):406–14. doi: 10.5152/tud.2022.22119.
  12. Тюзиков И.А., Греков Е.А. Хронический простатит/синдром хронической тазовой боли: современные тренды и перспективы лечения с позиций доказательной медицины. Экспериментальная и клиническая урология 2022;15(1):90–100. [Tyuzikov I.A., Grekov E.A. Chronic prostatitis/chronic pelvic pain syndrome: current trends and prospects for treatment from the standpoint of evidence-based medicine. Experimental and Clinical Urology. 2022;15(1):90–100. (In Russ.)]. doi: 10.29188/2222-8543-2022-15-1-90-100.
  13. Pena V.N., Engel N., Gabrielson A.T., et al. Diagnostic and Management Strategies for Patients with Chronic Prostatitis and Chronic Pelvic Pain Syndrome. Drugs Aging. 2021;38(10):845–86. doi: 10.1007/s40266-021-00890-2.
  14. Magistro G., Wagenlehner F.M.E., Pilatz A. Chronic prostatitis/chronic pelvic pain syndrome. Urologie. 2023;62(6):590–96. doi: 10.1007/s00120-023-02089-2.
  15. Schluter J., Peled J.U., Taylor B.P., et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588(7837):303-307. doi: 10.1038/s41586-020-2971-8.
  16. Liu J., Wang Y., Zhang G., et al. Multi-Omics Analysis Reveals Changes in the Intestinal Microbiome, Transcriptome, and Methylome in a Rat Model of Chronic Non-bacterial Prostatitis: Indications for the Existence of the Gut-Prostate Axis. Frontiers in Physiology. 2022;12. doi: 10.3389/fphys.2021.753034.
  17. Yarnell E., Abascal K. Natural approaches to treating chronic prostatitis and chronic pelvic pain syndromes. Alter Complement Ther. 2005;11:246–51. doi: 10.1089/act.2005.11.246.
  18. Al Bander Z., Nitert M.D., Mousa A., Naderpoor N. The Gut Microbiota and Inflammation: An Overview. Int J Environ Res Public Health. 2020;17(20):7618. doi: 10.3390/ijerph17207618.
  19. Afzaal M., Saeed F., Shah Y.A., et al. Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology. 2022;13. doi: 10.3389/fmicb.2022.999001.
  20. Hou K., Wu Z.X., Chen X.Y., et al. Microbiota in health and diseases. Sig Transduct Target Ther. 2022;7(1):1–28. doi: 10.1038/s41392-022-00974-4.
  21. Стуров Н.В., Попов С.В., Жуков В.А. Патогенетическая роль и возможности коррекции нарушения кишечной микробиоты при инфекции мочевых путей. Антибиотики и Химиотерапия. 2021;66(7–8):100–108. [Sturov N.V., Popov S.V., Zhukov V. A. Pathogenetic Role and Possibilities for Correction of Gut Microbiota Disorders in Urinary Tract Infections. Antibiotiki i Khimioterapiya=Antibiotics and Chemotherapy. 2021;66(7–8):100–8. (In Russ.)]. doi: 10.37489/0235-2990-2021-66-7-8-100-108.
  22. Стуров Н.В., Попов С.В., Жуков В.А., и др. Особенности кишечной микрофлоры при возрастных заболеваниях мужчин. Трудный пациент. 2021;17(8):37–41. [Sturov N.V., Popov S.V., Zhukov V.A., et al. Characteristics of intestinal microflora in age-related diseases in men. Trudnyj Pacient=Difficult Patient. 2021;19(8):37–41. (In Russ.)]. Doi: 10.224412/2074-1005- 2021-8-37-41.
  23. Miyake M., Tatsumi Y., Ohnishi K., et al. Prostate diseases and microbiome in the prostate, gut, and urine. Prostate International. 2022;10(2):96–107. doi: 10.1016/j.prnil.2022.03.004.
  24. Shoskes D.A., Wang H., Polackwich A.S., et al. Analysis of Gut Microbiome Reveals Significant Differences between Men with Chronic Prostatitis/Chronic Pelvic Pain Syndrome and Controls. J Urol. 2016;196(2):435–41. doi: 10.1016/j.juro.2016.02.2959.
  25. Holland B., Karr M., Delfino K., et al. The effect of the urinary and faecal microbiota on lower urinary tract symptoms measured by the international prostate symptom score: Analysis utilising next-generation sequencing. BJU Int. 2020;125:905–10. doi: 10.1111/bju.14972.
  26. Konkol Y., Keskitalo A., Vuorikoski H., et al. Chronic nonbacterial prostate inflammation in a rat model is associated with changes of gut microbiota that can be modified with a galactoglucomannan-rich hemicellulose extract in the diet. BJU Int. 2019;123(5):899–908. doi: 10.1111/bju.14553.
  27. Ansari I., Raddatz G., Gutekunst J., et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol. 2020;5(4):610–19. doi: 10.1038/s41564-019-0659-3.
  28. Wang B., Kong Q., Li X., et al. A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients. 2020;12(10):3197. doi: 10.3390/nu12103197.
  29. Bibbo S., Abbondio M., Sau R., et al. Fecal Microbiota Signatures in Celiac Disease Patients With Poly-Autoimmunity. Front Cell Infect Microbiol. 2020;10:349. doi: 10.3389/fcimb.2020.00349
  30. White B., Welge M., Auvil L., et al. Microbiota of Chronic Prostatitis/Chronic Pelvic Pain Syndrome are Distinct from Interstitial Cystitis/Bladder Pain Syndrome. Published online March 8, 2021:2021.03.04.21252926. doi: 10.1101/2021.03.04.21252926.
  31. Wang S., Zang M., Yang X., et al. Gut microbiome in men with chronic prostatitis/chronic pelvic pain syndrome: profiling and its predictive significance. World J Urol. 2023;41(11):3019–26. doi: 10.1007/s00345-023-04587-6.
  32. Li J.S., Su S.L., Xu Z., et al. Potential roles of gut microbiota and microbial metabolites in chronic inflammatory pain and the mechanisms of therapy drugs. Ther Adv Chronic Dis. 2022;13:20406223221091177. doi: 10.1177/20406223221091177.
  33. Chen Y., Li J., Hu Y., et al. Multi-factors including Inflammatory/Immune, Hormones, Tumor-related Proteins and Nutrition associated with Chronic Prostatitis NIH IIIa+b and IV based on FAMHES project. Sci Rep. 2017;7(1):9143. doi: 10.1038/s41598-017-09751-8 .
  34. Chen L., Zhang M., Liang C. Chronic Prostatitis and Pelvic Pain Syndrome: Another Autoimmune Disease? Arch Immunol Ther Exp. 2021;69(1):24. doi: 10.1007/s00005-021-00628-3.
  35. Vickman R.E., Aaron-Brooks L., Zhang R., et al. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. Nat Commun. 2022;13(1):2133. doi: 10.1038/s41467-022-29719-1.
  36. Jeon S.H., Zhu G.Q., Kwon E.B., et al. Extracorporeal shock wave therapy decreases COX-2 by inhibiting TLR4-NFκB pathway in a prostatitis rat model. Prostate. 2019;79(13):1498–504. doi: 10.1002/pros.23880.
  37. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. doi: 10.1038/s41422-020-0332-7.
  38. Capone A., Volpe E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front Immunol. 2020;11:348. doi: 10.3389/fimmu.2020.00348.
  39. Kartjito M.S., Yosia M., Wasito E., et al. Defining the Relationship of Gut Microbiota, Immunity, and Cognition in Early Life–A Narrative Review. Nutrients. 2023;15(12):2642. doi: 10.3390/nu15122642
  40. Maciel-Fiuza M.F., Muller G.C., Campos D.M.S., et al. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol. 2023;14. doi: 10.3389/fmicb.2023.1098386.
  41. Shaheen W.A., Quraishi M.N., Iqbal T.H. Gut microbiome and autoimmune disorders. Clin Exp Immunol. 2022;209(2):161–74. doi: 10.1093/cei/uxac057.
  42. Christovich A., Luo X.M. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front Immunol. 2022;13. 2024. doi: 10.3389/fimmu.2022.946248.
  43. Su X., Yin X., Liu Y., et al. Gut Dysbiosis Contributes to the Imbalance of Treg and Th17 Cells in Graves’ Disease Patients by Propionic Acid. J Clin Endocrinol Metab. 2020;105(11):dgaa511. doi: 10.1210/clinem/dgaa511.
  44. Gasaly N., de Vos P., Hermoso M.A. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol. 2021;12:658354. doi: 10.3389/fimmu.2021.658354.
  45. Du H.X., Yue S.Y., Niu D., et al. Gut Microflora Modulates Th17/Treg Cell Differentiation in Experimental Autoimmune Prostatitis via the Short-Chain Fatty Acid Propionate. Front Immunol. 2022;13:915218. doi: 10.3389/fimmu.2022.915218.
  46. Fishbein S.R.S., Mahmud B., Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol. 2023;21(12):772–88. doi: 10.1038/s41579-023-00933-y.
  47. Patangia D.V., Anthony Ryan C., Dempsey E., et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022;11(1):e1260. doi: 10.1002/mbo3.1260
  48. Qiao J., Xiao X., Wang K., et al. Rapeseed bee pollen alleviates chronic non-bacterial prostatitis via regulating gut microbiota. J Sci Food Agric. 2023;103(15):7896–904. doi: 10.1002/jsfa.12878.
  49. Liu J., Yu J., Peng X. Poria cocos Polysaccharides Alleviates Chronic Nonbacterial Prostatitis by Preventing Oxidative Stress, Regulating Hormone Production, Modifying Gut Microbiota, and Remodeling the DNA Methylome. J Agric Food Chem. 2020;68(45):12661–670. doi: 10.1021/acs.jafc.0c05943.
  50. Yu J., Hu Q., Liu J., et al. Metabolites of gut microbiota fermenting Poria cocos polysaccharide alleviates chronic nonbacterial prostatitis in rats. Int J Biol Macromol. 2022;209(Pt B):1593–604. doi: 10.1016/j.ijbiomac.2022.04.029.
  51. Cai T., Gallelli L., Cione E., et al. The use of Lactobacillus casei DG® prevents symptomatic episodes and reduces the antibiotic use in patients affected by chronic bacterial prostatitis: results from a phase IV study. World J Urol. 2021;39(9):3433–40. doi: 10.1007/s00345-020-03580-7.
  52. Bretto E., D’Amico F., Fiore W., Tursi A., Danese S. Lactobacillus paracasei CNCM I 1572: A Promising Candidate for Management of Colonic Diverticular Disease. J Clin Med. 2022;11(7):1916. doi: 10.3390/jcm11071916.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (91KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies