Method of extracellular matrix restoration using collagen replacement therapy with Linerase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Components of the dermis, including fibroblasts, collagen, elastic fibers, glycosaminoglycans and proteoglycans, undergo significant changes during intrinsic and extrinsic aging processes. Previous studies have shown that increased degradation and decreased biosynthesis of collagen leads to a «net deficiency» of collagen, which is characterized by clinical changes such as wrinkles and loss of skin elasticity. Fibroblasts are resident cells of the dermis and are different from mesenchymal cells. They are responsible for the synthesis and degradation of fibrous and amorphous proteins of the extracellular matrix (ECM). Their function and interaction with the environment are important for understanding the molecular mechanism of skin aging. In young skin, fibroblasts adhere to the surrounding intact ECM, which mainly consists of type I collagen. This adherence allows fibroblasts to exert mechanical force on the surrounding ECM, as well as to spread and maintain a normal elongated shape. In aging skin, fibroblast attachment is impaired due to progressive ECM degradation, which leads to a decrease in fibroblast size, decreased elongation and collapse of morphology. Based on the data obtained, it can be assumed that the function of fibroblasts in the skin can be stimulated by enhancing the structural support of the ECM. In this case, it is rational to use collagen replacement therapy. This article describes the mechanism of action of collagen replacement therapy with Linerase and presents clinical cases of combined instrumental and injection cosmetology methods.

Full Text

Restricted Access

About the authors

M. A. Morzhanaeva

Skin Art Clinic

Email: elene-elene@bk.ru
ORCID iD: 0000-0001-8657-9559
Russian Federation, Moscow

E. V. Svechnikova

Polyclinic No. 1 of the Administrative Directorate of the President of the Russian Federation; Russian Biotechnology University

Author for correspondence.
Email: elene-elene@bk.ru
ORCID iD: 0000-0002-5885-4872

Dr. Sci. (Med.), Head of the Department of Dermatovenereology and Cosmetology, Polyclinic No. 1 of the Administrative Directorate of the President of the Russian Federation; Professor at the Department of Skin and Sexually Transmitted Diseases, Russian Biotechnological University

Russian Federation, Moscow; Moscow

References

  1. Shin J.W., Kwon S.H., Choi J.Y., et al. Molecular mechanisms of dermal aging and antiaging approaches. Int J Mol Sci. 2019;20(9);2126. doi: 10.3390/ijms20092126.
  2. Verma R.P., Hansch C. Matrix metalloproteinases (mmps): Chemical-biological functions and (q)sars. Bioorg Med Chem. 2007;15:2223–68. doi: 10.1016/j.bmc.2007.01.011.
  3. Pittayapruek P., Meephansan J., Prapapan O., et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17:868. doi: 10.3390/ijms17060868.
  4. Park J.E., Pyun H.B., Woo S.W., et al. The protective effect of kaempferia parviflora extract on uvb-induced skin photoaging in hairless mice. Photodermatol Photoimmunol Photomed. 2014;30:237–45. doi: 10.1111/phpp.12097.
  5. Shaulian E., Karin M. Ap-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4:E131–6. doi: 10.1038/ncb0502-e131.
  6. Fisher G.J., Datta S.C., Talwar H.S., et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379:335–39. doi: 10.1038/379335a0.
  7. Brennan M., Bhatti H., Nerusu K.C., et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in uv-irradiated human skin. Photochem Photobiol. 2003;78:43–8. doi: 10.1562/0031-8655(2003)078<0043:MMITMC>2.0.CO;2.
  8. Newby A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85:1–31. doi: 10.1152/physrev.00048.2003.
  9. Kobayashi Y. Langerhans’ cells produce type iv collagenase (mmp-9) following epicutaneous stimulation with haptens. Immunology. 1997;90:496–501. doi: 10.1046/j.1365-2567.1997.00212.x.
  10. Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and timps. Cardiovasc Res. 2006;69:562–73. doi: 10.1016/j.cardiores.2005.12.002.
  11. Yokose U., Hachiya A., Sriwiriyanont P., et al. The endogenous protease inhibitor timp-1 mediates protection and recovery from cutaneous photodamage. J Invest Dermatol. 2012;132:2800–9. doi: 10.1038/jid.2012.204.
  12. Stadtman E.R. Protein oxidation and aging Science. 1992;257:1220–24. doi: 10.1126/science.1355616.
  13. Golden T.R., Hinerfeld D.A., Melov S. Oxidative stress and aging: Beyond correlation. Aging Cell. 2002;1:117–23. doi: 10.1046/j.1474-9728.2002.00015.x.
  14. Kim J., Lee C.W., Kim E.K., et al. Inhibition effect of gynura procumbens extract on uv-b-induced matrix-metalloproteinase expression in human dermal fibroblasts. J Ethnopharmacol. 2011;137:427–33. doi: 10.1016/j.jep.2011.04.072.
  15. Chiang H.M., Chen H.C., Chiu H.H., et al. Neonauclea reticulata (havil.) merr stimulates skin regeneration after uvb exposure via ros scavenging and modulation of the mapk/mmps/collagen pathway. Evid Based Complement Altern Med. 2013;2013:324864. doi: 10.1155/2013/324864.
  16. Quan T., Shao Y., He T., Voorhees J.J., Fisher G.J. Reduced expression of connective tissue growth factor (ctgf/ccn2) mediates collagen loss in chronologically aged human skin. J Investig Dermatol. 2010;130:415–24. doi: 10.1038/jid.2009.224.
  17. Choi Y.J., Moon K.M., Chung K.W., et al. The underlying mechanism of proinflammatory nf-kappab activation by the mtorc2/akt/ikkalpha pathway during skin aging. Oncotarget. 2016;7:52685–94. doi: 10.18632/oncotarget.10943.
  18. Vicentini F.T., He T., Shao Y., et al. Quercetin inhibits uv irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing nf-kappab pathway. J Dermatol Sci. 2011;61:162–68. doi: 10.1016/j.jdermsci.2011.01.002.
  19. Lee Y.R., Noh E.M., Han J.H., et al. Brazilin inhibits uvb-induced mmp-1/3 expressions and secretions by suppressing the nf-kappab pathway in human dermal fibroblasts. Eur J Pharmacol. 2012;674:80–6. doi: 10.1016/j.ejphar.2011.10.016.
  20. Varga J., Rosenbloom J., Jimenez S.A. Transforming growth factor beta (tgf beta) causes a persistent increase in steady-state amounts of type i and type iii collagen and fibronectin mrnas in normal human dermal fibroblasts. Biochem J. 1987;247:597–604. doi: 10.1042/bj2470597.
  21. Sun Z.W., Hwang E., Lee H.J., et al. Effects of galla chinensis extracts on uvb-irradiated mmp-1 production in hairless mice. J Nat Med. 2015;69:22–34. doi: 10.1007/s11418-014-0856-6.
  22. Hwang E., Lee D.G., Park S.H., et al. Coriander leaf extract exerts antioxidant activity and protects against uvb-induced photoaging of skin by regulation of procollagen type i and mmp-1 expression. J Med Food. 2014;17:985–95. doi: 10.1089/jmf.2013.2999.
  23. Chen B., Li R., Yan N., et al. Astragaloside iv controls collagen reduction in photoaging skin by improving transforming growth factor-beta/smad signaling suppression and inhibiting matrix metalloproteinase-1. Mol Med Rep. 2015;11:3344–48. doi: 10.3892/mmr.2015.3212.
  24. He T., Quan T., Shao Y., et al. Oxidative exposure impairs tgf-beta pathway via reduction of type ii receptor and smad3 in human skin fibroblasts. Age (Dordr). 2014;36:9623. doi: 10.1007/s11357-014-9623-6.
  25. Cole M.A., Quan T., Voorhees J.J., Fisher G.J. Extracellular matrix regulation of fibroblast function: Redefining our perspective on skin aging. J Cell Commun Signal. 2018;12:35–43. doi: 10.1007/s12079-018-0459-1.
  26. Fisher G.J., Shao Y., He T., et al. Reduction of fibroblast size/mechanical force down-regulates tgf-beta type ii receptor: Implications for human skin aging. Aging Cell. 2016;15:67–76. doi: 10.1111/acel.12410.
  27. Fisher G.J., Quan T., Purohit T., et al. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am J Pathol. 2009;174:101–14. doi: 10.2353/ajpath.2009.080599.
  28. Amano S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp Dermatol. 2016;25(Suppl. 3):14–9. doi: 10.1111/exd.13085.
  29. Doubal S., Klemera P. Visco-elastic response of human skin and aging. J Am Aging Assoc. 2002;25:115–17. doi: 10.1007/s11357-002-0009-9.
  30. Naylor E.C., Watson R.E., Sherratt M.J. Molecular aspects of skin ageing. Maturitas. 2011;69:249–56. doi: 10.1016/j.maturitas.2011.04.011.
  31. Weihermann A.C., Lorencini M., Brohem C.A., de Carvalho C.M. Elastin structure and its involvement in skin photoageing. Int J Cosmet. Sci. 2017;39:241–47. doi: 10.1111/ ics.12372.
  32. Rossetti D., Kielmanowicz M.G., Vigodman S., et al. A novel anti-ageing mechanism for retinol: Induction of dermal elastin synthesis and elastin fibre formation. Int J Cosmet Sci. 2011;33: 62–9. doi: 10.1111/j.1468-2494.2010. 00588.x.
  33. Noblesse E., Cenizo V., Bouez C., et al. Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J Investig Dermatol. 2004;122:621–30. doi: 10.1111/j.0022-202X.2004.22330.x.
  34. Kielty C.M., Sherratt M.J., Shuttleworth C.A. Elastic fibres. J Cell Sci. 2002;115:2817–28. doi: 10.1242/jcs.115.14.2817.
  35. Sherratt M.J. Tissue elasticity and the ageing elastic fibre. Age (Dordr). 2009;31:305–25. doi: 10.1007/s11357-009-9103-6.
  36. Ramirez F., Carta L., Lee-Arteaga S., et al. Fibrillin-rich microfibrils – Structural and instructive determinants of mammalian development and physiology. Connect Tissue Res. 2008;49:1–6. doi: 10.1080/03008200701820708.
  37. Dahlback K., Ljungquist A., Lofberg H., et al. Fibrillin immunoreactive fibers constitute a unique network in the human dermis: Immunohistochemical comparison of the distributions of fibrillin, vitronectin, amyloid p component, and orcein stainable structures in normal skin and elastosis. J Investig Dermatol. 1990;94:284–91. doi: 10.1111/1523-1747.ep12874430.
  38. Yanagisawa H., Davis E.C., Starcher B.C., et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415:168–71. doi: 10.1038/415168a.
  39. Langton A.K., Sherratt M.J., Griffiths C.E., Watson R.E. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology. 2012;13:37–48. doi: 10.1007/s10522-011-9332-9.
  40. Ashworth J.L., Murphy G., Rock M.J., et al. Fibrillin degradation by matrix metalloproteinases: Implications for connective tissue remodelling. Biochem J. 1999; 340:171–81.
  41. Chakraborti S., Mandal M., Das S., et al. Regulation of matrix metalloproteinases: An overview. Mol Cell Biochem. 2003;253:269–85. doi: 10.1023/a:1026028303196.
  42. Ryu J., Park S.J., Kim I.H., et al. Protective effect of porphyra-334 on uva-induced photoaging in human skin fibroblasts. Int J Mol Med. 2014;34:796–803. doi: 10.3892/ijmm.2014.1815.
  43. Chung J.H., Seo J.Y., Lee M.K., et al. Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J Investig Dermatol. 2002;119:507–12. doi: 10.1046/j.1523-1747.2002.01844.x.
  44. Imokawa G., Ishida K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging i: Reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int J Mol Sci. 2015;16:7753–75. doi: 10.3390/ijms16047753.
  45. Cenizo V., Andre V., Reymermier C., et al. Loxl as a target to increase the elastin content in adult skin: A dill extract induces the loxl gene expression. Exp Dermatol. 2006;15:574–81. doi: 10.1111/j.1600-0625.2006.00442.x.
  46. Kohl E., Steinbauer J., Landthaler M., Szeimies R.M. Skin ageing. J Eur Acad Dermatol Venereol. 2011;25:873–84. doi: 10.1111/j.1468-3083.2010.03963.x.
  47. Taylor K.R., Gallo R.L. Glycosaminoglycans and their proteoglycans: Host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006;20:9–22. doi: 10.1096/fj.05-4682rev.
  48. Oh J.H., Kim Y.K., Jung J.Y., et al. Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Exp Dermatol. 2011;20:454–56. doi: 10.1111/j.1600-0625.2011.01258.x.
  49. Lee D.H., Oh J.H., Chung J.H. Glycosaminoglycan and proteoglycan in skin aging. J Dermatol Sci. 2016;83:174–81. doi: 10.1016/j.jdermsci.2016.05.016.
  50. Anderegg U., Simon J.C., Averbeck M. More than just a filler – The role of hyaluronan for skin homeostasis. Exp Dermatol. 2014;23:295–303. doi: 10.1111/exd.12370.
  51. Humbert P.G., Haftek M., Creidi P., et al. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: Double-blind study vs. Placebo. Exp Dermatol. 2003;12:237–44. doi: 10.1034/j.1600-0625.2003.00008.x.
  52. Oh J.H., Kim Y.K., Jung J.Y., et al. Intrinsic aging- and photoaging-dependent level changes of glycosaminoglycans and their correlation with water content in human skin. J Dermatol Sci. 2011;62:192–201. doi: 10.1016/j.jdermsci.2011.02.007.
  53. Tobiishi M., Sayo T., Yoshida H., et al. Changes in epidermal hyaluronan metabolism following uvb irradiation. J Dermatol Sci. 2011;64:31–8. doi: 10.1016/j.jdermsci.2011.06.006.
  54. Tzellos T.G., Klagas I., Vahtsevanos K., et al. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp Dermatol. 2009;18:1028–35. doi: 10.1111/j.1600-0625.2009. 00889.x.
  55. Maytin E.V. Hyaluronan: More than just a wrinkle filler. Glycobiology. 2016;26:553–59. doi: 10.1093/glycob/cww033.
  56. Li Y., Liu Y., Xia W., et al. Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci Rep. 2013;3:2422. doi: 10.1038/ srep02422.
  57. Свечникова Е.В., Моржанаева М.А., Горская А.А. Аминокислотно-заместительная терапия как подготовка и усиление эффективности коллагеностимулирующих методов. Фарматека. 2023;30(8):83–90. [Svechnikova E.V., Morzhanaeva M.A., Gorskaya A.A. Amino acid replacement therapy as preparation and enhancement of the effectiveness of collagen-stimulating methods. Farmateka. 2023;30(8):83–90. (In Russ.)]. doi: 10.18565/pharmateca.2023. 8.83-90.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Schematic illustration showing changes in fibroblasts, collagen, and elastic fibers during skin aging

Download (443KB)
3. Figure 2. Genetic panel for detection of nDST markers

Download (150KB)
4. Figure 3. Data of genetic study of patient S., 46 years old

Download (192KB)
5. Figure 4. Patient S., 46 years old, result of a complex correction protocol

Download (624KB)
6. Figure 5. Data of genetic study of patient S., 43 years old

Download (194KB)
7. Figure 6. Patient S., 43 years old, the result of a complex correction protocol including PDLLA-based collagen stimulator combined with Linerase collagen replacement therapy

Download (515KB)
8. Figure 7. Algorithm of forming combined protocols for nDST

Download (911KB)

Copyright (c) 2024 Bionika Media