On the significance of the state of the antioxidant system and free radical oxidation processes in patients with post-Covid alopecia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. This article is devoted to the problem of free radical oxidation (FRO) of lipids and proteins in patients with hair loss associated with a new coronavirus infection. Information on oxidative stress, FRO processes and the effect of free radicals on tissue is provided. The mechanism of activation of the FRO system during viral infections, incl. COVID-19, is described. Results reflecting the intensity of FRO in patients with post-Covid hair loss were obtained. The results of oxidative modification of proteins were assessed by the level of their carboxyl derivatives and indicators of plasma antioxidant activity. A correlation between FRO processes and disorders of the prothrombotic hemostasis system has been established.

Objective. Comprehensive assessment of the pro- and antioxidant statuses of patients with post-Covid alopecia, identifying correlations between the pro- and antioxidant statuses and microcirculation disorders.

Methods. The state of the FRO of lipids and proteins was assessed in three groups of patients: the main group included 26 female patients with post-Covid alopecia, the comparison group included 13 patients with alopecia of other etiologies, the control group included 10 patients without acute and chronic pathologies, without symptoms of hair loss.

Results. The results of studying blood serum samples from patients using the method of induced biochemiluminescence demonstrated a statistically significant increase in the level of parameter S, characterizing the intensity of FRO, and parameter Z, characterizing the overall antioxidant activity in the group of patients with post-Covid alopecia.

Conclusion. Based on the results of the study and literature data, it can be concluded that oxidative stress and hemostasis disorders occupy a significant place in the pathogenesis of post-Covid alopecia.

Full Text

Restricted Access

About the authors

Anastasia Y. Nikolaeva

Privolzhsky Research Medical University

Author for correspondence.
Email: ayunikolaeva@yandex.ru
ORCID iD: 0009-0003-8877-3381
SPIN-code: 7988-8853

Postgraduate Student, Department of Skin and Venereal Diseases

Russian Federation, Nizhny Novgorod

O. A. Bitkina

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
ORCID iD: 0000-0003-4993-3269
Russian Federation, Nizhny Novgorod

I. V. Kosheleva

Russian Medical Academy of Continuous Professional Education

Email: ayunikolaeva@yandex.ru
ORCID iD: 0000-0003-2767-3021
Russian Federation, Moscow

K. N. Kontorschikova

Privolzhsky Research Medical University; Lobachevsky State University of Nizhny Novgorod

Email: ayunikolaeva@yandex.ru
ORCID iD: 0000-0001-8345-9359
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

M. V. Presnyakova

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
ORCID iD: 0000-0002-3951-9403
Russian Federation, Nizhny Novgorod

A. A. Dmitrieva

Privolzhsky Research Medical University; Lobachevsky State University of Nizhny Novgorod

Email: ayunikolaeva@yandex.ru
ORCID iD: 0009-0000-9489-5498
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

M. G. Belcheva

Privolzhsky Research Medical University

Email: ayunikolaeva@yandex.ru
ORCID iD: 0009-0003-3522-7424
Russian Federation, Nizhny Novgorod

E. V. Bitkina

Peoples’ Friendship University of Russia n.a. Patrice Lumumba

Email: ayunikolaeva@yandex.ru
ORCID iD: 0009-0009-3175-0836
Russian Federation, Moscow

References

  1. Dong C., Zhang N.J., Zhang L.J. Oxidative stress in leukemia and antioxidant treatment. Chin Med J. 2021;134(16):1897–907. doi: 10.1097/CM9.0000000000001628.
  2. Старовойт А.В. Клинико-лабораторная оценка метаболических нарушений при воздействии повышенного и пониженного давления и подходы к их коррекции. Дисс. канд. мед. наук. СПб., 2011. [Starovoyt A.V. Clinical and laboratory assessment of metabolic disorders under the influence of high and low blood pressure and approaches to their correction. Diss. Cand. of Med. Sciences. St. Petersburg, 2011. (In Russ.)].
  3. Di Meo S., Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longevit. 2020;2020. ID 9829176.
  4. Тедтоева А.И., Можаева И.В., Дзугкоев С.Г. и др. Роль перекисного окисления липидов в формировании гемодинамических нарушений на фоне хронической кобальтовой интоксикации в эксперименте у крыс. Известия Самарского научного центра РАН. 2010;1–7. [Tedtoeva A.I., Mozhaeva I.V., Dzugkoev S.G. et al. The role of lipid peroxidation in the formation of hemodynamic disorders against the background of chronic cobalt intoxication in an experiment in rats. News of the Samara Scientific Center of the Russian Academy of Sciences. 2010;1–7. (In Russ.)].
  5. Фархутдинов P.P. Свободнорадикальное окисление: мифы и реальность (избранные лекции). Медицинский вестник Башкортостана. 2006;1. [Farkhutdinov P.P. Free radical oxidation: myths and reality (selected lectures). Medical Bulletin of Bashkortostan. 2006;1. (In Russ.)].
  6. Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontol. 2009;10(6):773. doi: 10.1007/s10522-009-9234-2.
  7. Колесникова Л.И., Даренская М.А., Колесни-ков С.И. Свободнорадикальное окисление: взгляд патофизиолога. Бюллетень сибирской медицины. 2017;4(16):16–29. [Kolesnikova L.I., Darenskaya M.A., Kolesnikov S.I. Free radical oxidation: the view of a pathophysiologist. Bulletin of Siberian Medicine. 2017;4(16):16–29. (In Russ.)]. doi: 10.20538/1682-0363-2017-4-16–29.
  8. Van der Pol A., Van Gilst W.H., Voors A.A., et al. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Failure. 2019;21(4):425–35. doi: 10.1002/ejhf.1320.
  9. Shaw P., Kumar N., Sahun M., et al. Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomed. 2022;10(4):823. doi: 10.3390/biomedicines10040823.
  10. Pisoschi A., Pop A., Iordachе F., et al. Reducing oxidative stress with antioxidants-An overview of their chemical composition and impact on health. Eur J Med Chem. 2021;209:112891. doi: 10.1016/j.ejmech.2020.112891.
  11. Guillin O.M., Vindry C., Ohlmann T., et al. Selenium, selenoproteins and viral infection. Nutrients. 2019;11(9):2101. doi: 10.3390/nu11092101.
  12. Chernyak B.V., Popova E.N., Prikhodko A.S., et al. COVID-19 and oxidative stress. Biochem. (Moscow). 2020;85(12):1543–53.
  13. Khomich O.A., Kochetkov S.N., Bartosch B., Ivanov A.V. Redox Biology of Respiratory Viral Infections. Viruses. 2018;10(8):392. doi: 10.3390/v10080392.
  14. Wang M.M., Lu M., Zhang C.L., et al. Oxidative stress modulates the expression of toll-like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol Med Rep. 2018;18(2):1867–77. doi: 10.3892/mmr.2018.9089.
  15. Haque M.M., Murale D.P., Lee J.S. Role of microRNA and oxidative stress in influenza A virus pathogenesis. Int J Mol Sci. 2020;21(23):8962. doi: 10.3390/ijms21238962.
  16. Нагорная Н.В., Четверик Н.А. Оксидативный стресс: влияние на организм человека, методы оценки. Здоровье ребенка. 2010;2(23). [Nagornaya N.V., Chetverik N.A. Oxidative stress: impact on the human body, assessment methods. Child’s health. 2010;2(23). (In Russ.)].
  17. Laforge M., Elbim C., Frиre C., et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515–16. doi: 10.1038/s41577-020-0407-1.
  18. Schonrich G., Raftery M.J., Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Boil Regulat. 2020;77:100741. doi: 10.1016/j.jbior.2020.100741.
  19. Camini F.C., da Silva Caetano C.C., Almeida L.T., et al. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017;162:907–17. doi: 10.1007/s00705-016-3187-y.
  20. Vatner S.F., Zhang J., Oydanich M., et al. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101. doi: 10.1016/j.arr.2020.101194.
  21. Su L.J., Zhang J.H., Gomez H., et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longevity. 2019;2019. ID 5080843.
  22. Prie B.E., Voiculescu V.M., Ionescu-Bozdog O.B., et al. Oxidative stress and alopecia areata. J Med Life. 2015;8:43.
  23. Котов А.А., Иванов О.Л., Кошелева И.В. Состояние антиоксидантной активности у больных ограниченной склеродермией и влияние на нее озонотерапии. Российский журнал кожных и венерических болезней. 2004;5:44–50. [Kotov A.A., Ivanov O.L., Kosheleva I.V. The state of antioxidant activity in patients with limited scleroderma and the effect of ozone therapy on it. Russian Journal of Skin and Venereal Diseases. 2004;5:44–50. (In Russ.)].
  24. Копытова Т.В., Добротина Н.А., Химкина Л.Н., Ларина Т.Н. Лабораторная диагностика эндоинтоксикации при хронических дерматозах. Клиническая лабораторная диагностика. 2000;1:14–7. [Kopytova T.V., Dobrotina N.A., Khimkina L.N., Larina T.N. Laboratory diagnosis of endointoxication in chronic dermatoses. Clinical laboratory diagnostics. 2000;1:14–7. (In Russ.)].
  25. Парфенова М.А., Бобынцев И.И., Силина Л.В. Показатели перекисного окисления липидов и системы антиоксидантной защиты у больных псориазом и ишемической болезнью сердца при комплексном лечении с мексикором. Человек и его здоровье. 2012;4. [Parfenova M.A., Bobyntsev I.I., Silina L.V. Indicators of lipid peroxidation and the antioxidant defense system in patients with psoriasis and coronary heart disease during complex treatment with Mexicor. Man and his health. 2012;4. (In Russ.)].
  26. Биткина О.А., Копытова Т.В., Конторщикова К.Н., Баврина А.П. Уровень окислительного стресса у больных розацеа и обоснование терапевтического применения озоно-кислородной смеси. Клиническая лабораторная диагностика. 2010;4:13–6. Bitkina O.A., Kopytova T.V., Kontorschikova K.N., Bavrina A.P. Level of oxidative stress in patients with rosacea and rationale for the therapeutic use of ozone-oxygen mixture. Clinical laboratory diagnostics. 2010;4:13–6. (In Russ.)].
  27. Биткина О.А., Конторщикова К.Н., Гречканева О.А., Трунтаева Ю.А. Озонотерапия розацеа в практике косметолога. Пластическая хирургия и косметология. 2014;4:583–88. [Bitkina O.A., Kontorschikova K.N., Grechkaneva O.A., Truntaeva Yu.A. Ozone therapy for rosacea in the practice of a cosmetologist. Plastic surgery and cosmetology. 2014;4:583–88. (In Russ.)].
  28. Суздальцева И.В., Копытова Т.В., Пантелеева Г.А. Роль эндогенной интоксикации в патогенезе акантолитической пузырчатки. Российский журнал кожных и венерических болезней. 2008;5:31–3. [Suzdaltseva I.V., Kopytova T.V., Panteleeva G.A. The role of endogenous intoxication in the pathogenesis of acantholytic pemphigus. Russian Journal of Skin and Venereal Diseases. 2008;5:31–3. (In Russ.)].
  29. Кошелева И.В., Майорова А.В. Динамика показателей свободнорадикального окисления и эффективность микроциркуляции в процессе озонотерапии. Экспериментальная и клиническая дерматокосметология. 2014;3:3–14. [Kosheleva I.V., Mayorova A.V. Dynamics of free radical oxidation indicators and the effectiveness of microcirculation in the process of ozone therapy. Experimental and clinical dermatocosmetology. 2014;3:3–14. (In Russ.)].
  30. Кошелева И.В., Биткина О.А., Кливинтская Н.А., Шадыжева Л.И. Возможности реабилитации больных атопическим дерматитом и профилактики обострений нелекарственными средствами. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2017;94(4):35–42. [Kosheleva I.V., Bitkina O.A., Klivintskaya N.A., L.I. Shadyzheva L.I. Possibilities of rehabilitation of patients with atopic dermatitis and prevention of exacerbations with non-medicinal agents. Issues of balneology, physiotherapy and therapeutic physical culture. 2017;94(4):35–42. (In Russ.)].
  31. Davis M.G., Piliang M.P., Bergfeld W.F., et al. Scalp application of antioxidants improves scalp condition and reduces hair shedding in a 24-week randomized, double-blind, placebo-controlled clinical trial. Int J Cosmet Sci. 2021;43:514–25. doi: 10.1111/ics.12734.
  32. Cwynar A., Olszewska-Slonina D., Czajkowski R., et al. Evaluation of selected parameters of oxidative stress in patients with alopecia areata. Adv Dermatol Allergol. 2019;36(1):115–16. doi: 10.5114/pdia.2017.71237.
  33. Trueb R.M., Henry J.P., Davis M.G., et al. Scalp condition impacts hair growth and retention via oxidative stress. Int J Trichol. 2018;10(6):262. doi: 10.4103/ijt.ijt_57_18.
  34. Wollina U., Karadag A.S., Rowland-Payne C., et al. Cutaneous signs in COVID-19 patients: a review. Dermatol Ther. 2020;33(50):13549. doi: 10.1111/dth.13549.
  35. Arefinia N., Ghoreshi Z.A.S., Alipour A.H., et al. A comprehensive narrative review of the cutaneous manifestations associated with COVID-19. Int Wound J. 2023;20(3):871–79. doi: 10.1111/iwj.13933.
  36. Кошелева И.В., Биткина О.А., Шадыжева Л.И. и др. К вопросу о дерматологических аспектах новой коронавирусной инфекции (COVID-19). Фарматека. 2021;28:42–7. [Kosheleva I.V., Bitkina O.A., Shadyzheva L.I. et al. On the dermatological aspects of the novel coronavirus infection (COVID-19). Farmateka. 2021;28:42–7. (In Russ.)]. doi: 10.18565/pharmateca.2021.8.42-47.
  37. Кошелева И.В., Биткина О.А., Шадыжева Л.И. и др. Поражения кожи, ассоциированные с новой коронавирусной инфекцией (COVID-19). Фарматека. 2020;27(8):8–17. [Kosheleva I.V., Bitkina O.A., Shadyzheva L.I. et al. Skin lesions associated with new coronavirus infection (COVID-19). Farmateka. 2020;27(8):8–17. (In Russ.)]. doi: 10.18565/pharmateca.2020.8.8-16.
  38. Катханова О.А., Голубченко М.В. Опыт терапии алопеции СOVID-19. Медицинский совет. 2022;16(14):212–8. [Katkhanova O.A., Golubchenko M.V. Experience in the treatment of COVID-19 alopecia. Medical advice. 2022;16(14):212–8. (In Russ.)].
  39. Dominguez-Santas M., Haya-Martinez L., Fernandez-Nieto D., et al. Acute telogen effluvium associated with SARS-CoV-2 infection. Aust J Gen Pract. 2020;49:32. doi: 10.31128/AJGP-COVID-32.
  40. Rivetti N., Barruscotti S. Management of telogen effluvium during the COVID-19 emergency: psychological implications. Dermatol Ther. 2020;33(4):23. doi: 10.1111/dth.13648.
  41. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. MedRxiv. 2021. doi: 10.1101/2021.01.27.21250617.
  42. Николаева А.Ю., Биткина О.А., Кошелева И.В. и др. Постковидные алопеции: от изучения патогенеза к выбору терапии. Фарматека. 2023;8:76–82. [Nikolaeva A.Yu., Bitkina O.A., Kosheleva I.V., et al. Postcovid alopecia: from the study of pathogenesis to the choice of therapy. 2023;8:76–82. (In Russ.)]. doi: 10.18565/pharmateca.2023.8.76-82.
  43. Куликов А.Г. Озонотерапия: микрогемодинамические аспекты. Физиотерапия, бальнеология и реабилитация. 2012;3. [Kulikov A.G. Ozone therapy: microhemodynamic aspects. Physiotherapy, balneology and rehabilitation. 2012;3.
  44. Pizzorni C., Sulli A., Smith V., et al. Capillaroscopy 2016: new perspectives in systemic sclerosis. Acta Reumatol Port. 2016;41(1):8–14.
  45. Павелкина В.Ф., Абрашина И.В., Коваленко Е.Н. и др. Окислительный стресс и состояние антиоксидантной защиты при геморрагической лихорадке с почечным синдромом. Здоровье и образование в XXI в. 2021;11. [Pavelkina V.F., Abrashina I.V., Kovalenko E.N. and others. Oxidative stress and the state of antioxidant defense in hemorrhagic fever with renal syndrome. Health and education in the 21st century. 2021;11. (In Russ.)].
  46. Якубова Е.Г., Алборов Р.Г. Роль антиоксидантной терапии в профилактике липопероксидации и прокоагулянтной активности тромбоцитов при вирусных инфекциях SARS-COV-2. Евразийский союз ученых. 2021;3–2(84):63–8. [Yakubova E.G., Alborov R.G. The role of antioxidant therapy in the prevention of lipid peroxidation and procoagulant activity of platelets during SARS-COV-2 viral infections. Eurasian Union of Scientists. 2021;3–2(84):63–8. (In Russ.)].doi: 10.31618/ESU.2413-9335.2021.2.84.1276.
  47. Кузьмина Е.И., Нелюбин А.С., Щенникова М.К. Применение индуцированной биохемилюминесценции для оценки свободнорадикальных реакций в биологических субстратах. В кн.: Биохимия и биофизика микроорганизмов. Горький, 1983. С. 173–83. [Kuzmina E.I., Nelyu-bin A.S., Shchennikova M.K. Application of induced biochemiluminescence to assess free radical reactions in biological substrates. In the book: Biochemistry and biophysics of microorganisms. Gorky, 1983. P. 173–83. (In Russ.)].
  48. Волчегорский И.А., Налимов А.Г., Яровинс-кий Б.Г., Лифшиц Р.И. Сопоставление различных подходов к определению продуктов перекисного окисления липидов в гептан-изопропанольных экстрактах крови. Вопросы медицинской химии. 1989;35(1):127–31. [Volchegorsky I.A., Nalimov A.G., Yarovinsky B.G., Lifshits R.I. Comparison of different approaches to the determination of lipid peroxidation products in heptane-isopropanol blood extracts. Questions of medicinal chemistry. 1989;35(1):127–31. (In Russ.)].
  49. Дубинина Е.Е., Бурмистров С.О., Ходов Д.А. Окислительная модификация белков сыворотки крови человека, метод ее определения. Вопросы медицинской химии. 1995;1:24–6. [Dubinina E.E., Burmistrov S.O., Khodov D.A. Oxidative modification of human serum proteins, method of its determination. Questions of medicinal chemistry. 1995;1:24–6. (In Russ.)].
  50. Копытова Т. В., Пантелеева Г. А., Дмитриева О.Н. и др. Оценка окислительной модификации белков у больных хроническими распространенными дерматозами. Клиническая лабораторная диагностика. 2014;59(2):41–4. [Kopytova T.V., Panteleeva G.A., Dmitrieva O.N. et al. Assessment of oxidative modification of proteins in patients with chronic common dermatoses. Clinical laboratory diagnostics. 2014;59(2):41–4. (In Russ.)].
  51. Кошелева И.В., Кливитская Н.А., Гаджиева Р.М. Сосудистые нарушения у больных дерматозами. Фарматека. 2016;19(332):56–61. [Kosheleva I.V., Klivitskaya N.A., Gadzhieva R.M. Vascular disorders in patients with dermatoses. Farmateka. 2016;19(332):56–61.(In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical kinetic curve of the BHL signal

Download (62KB)
3. Fig. 2. BHL analysis indicators

Download (398KB)

Copyright (c) 2024 Bionika Media