Doxorubicin and toxicity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Doxorubicin is an anthracycline, a topoisomerase inhibitor. Being drugs with a broad antitumor effect, anthracyclines are used for many malignant tumors (leukemia, lymphoma, breast cancer, endometrial cancer, cervical cancer, neuroblastoma, Wilms tumor, etc.). The most significant late toxic manifestations include cardiotoxicity. The action of free radicals explains the cardiotoxic effect inherent in this class of drugs. It was noted that in the days following the administration of the chemotherapy drug, the blood plasma troponin I level increased, and in patients with such phenomena the risk of late complications from the cardiovascular system increased. The purpose of this review was to describe the mechanism of action of doxorubicin, side effects, identify predictive markers of cardiotoxicity, as well as methods to overcome toxicity and improve efficiency. The possibility of synthesizing new materials has opened up a new promising direction in the field of biotechnology, in particular the production of calcium carbonate nanoparticles in aqueous solutions. The drug delivery system makes it possible to reduce its general toxic effect and prolong the therapeutic effect. Further study of the drug release process seems to be an urgent task at the moment. There is a significant increase in the risk of cardiotoxicity at doses above 550 mg/m2. As a rule, oncologists recommend the use of total doses of doxorubicin not exceeding 300 mg/m2 for both children and adults.

全文:

受限制的访问

作者简介

Maria Sayapina

Pavlov Medical University

编辑信件的主要联系方式.
Email: maria.sayapina@mail.ru
ORCID iD: 0000-0003-3056-5523

R.M. Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantolog

俄罗斯联邦, St. Petersburg

参考

  1. Травень В.Ф. Органическая химия: учебник для вузов; в 2 томах. (Т. 2). М.: ИКЦ Академкнига, 2004. [Traven V.F. Organic chemistry: textbook for universities; in 2 volumes. (Vol. 2). M.: Akademkniga, 2004. (In Russ.)].
  2. Мартинович Г.Г., Мартинович И.В., Вчераш-няя А.В. и др. Хемосенсибилизация опухолевых клеток фенольными антиоксидантами: роль фактора транскрипции Nrf2. Биофизика. 2020;65(6):1081–92. [Martinovich G.G., Martinovich I.V., Yesterday A.V. et al. Chemosensitization of tumor cells by phenolic antioxidants: the role of the transcription factor Nrf2. Biophysics. 2020;65(6):1081–92. (In Russ.)].
  3. Malisza K.L., Hasinoff B.B. Inhibition of anthracycline semiquinone formation by ICRF-187 (dexrazoxane) in cells. Free Radic Biol Med. 1996;20:905. doi: 10.1016/0891-5849(95)02188-4.
  4. Kuznetsov A., Margreiter R., Amberger A., et al. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta. 2011;1813:1144–52. doi: 10.1016/j.bbamcr.2011.03.002.
  5. Varbiro G., Veres B., Gallyas F., et al. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med. 2001;31:548–58. doi: 10.1016/s0891-5849(01)00616-5.
  6. Ko J.H., Sethi J., Um J.Y., et al., The Role of Resveratrol in Cancer Therapy. Int J Mol Sci. 2017;18(12):2589.
  7. Гендлин Г.Е., Емелина Е.И., Никитин И.Г., Васюк Ю.А. Современный взгляд на кардиотоксичность химиотерапии онкологических заболеваний, включающей антрациклиновые антибиотики. Российский кардиологический журнал. 2017;(3):145–54. [Gendlin G.E., Emelina E.I., Nikitin I.G., Vasyuk Yu.A. Modern view on cardiotoxicity of chemotherapeutics in oncology including anthracyclines. Russian Journal of Cardiology. 2017;(3):145–54. (In Russ.)]. doi: 10.15829/1560-4071-20173-145-154.
  8. Саенко Ю.В. Изучение органоспецифичных механизмов оксидативного стресса. Дисс. канд. биол. наук. Ульяновск, 2005. [Saenko Yu.V. Study of organ-specific mechanisms of oxidative stress. Diss. Cand. of Med. Sciences. Ulyanovsk, 2005. (In Russ.)].
  9. Чаулин А.М., Григорьева Ю.В. Проаритмические эффекты доксорубицина (Обзор литературы). Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2020;3(55):118–24. [Chaulin A.M., Grigorieva Yu.V. Proarrhythmic effects of doxorubicin (Literature review). News of higher educational institutions. Volga region. Medical Sciences. 2020;3(55):118–24. (In Russ.)].
  10. Jensen R.A., Acton E.M., Peters J.H. Doxorubicin cardiotoxicity in the rat: comparison of electrocardiogram, transmembrane potential, and structural effects. J Cardiovasc Pharmacol. 1984;6(1):186–200.
  11. Milberg P., Fleischer D., Stypmann J., et al. Reduced repolarization reserve due to anthracycline therapy facilitates torsade de pointes induced by IKr blockers. Basic Res Cardiol. 2007;102(1):42–51. doi: 10.1007/s00395-006-0609-0.
  12. Ducroq J., Moha ou Maati, H., Guilbot, S., et al. Dexrazoxane protects the heart from acute doxorubicin-induced QT prolongation: a key role for I(Ks). Br J Pharmacol. 2010;159(1):93–101. doi: 10.1111/j.1476-5381.2009.00371.x.
  13. Agen C., Bernardini N., Danesi R., et al. Reducing doxorubicin cardiotoxicity in the rat using deferred treatment with ADR-529. Cancer Chemother Pharmacol. 1992;30(2):95–9. doi: 10.1007/bf00686399.
  14. Pecoraro M., Rodriguez-Sinovas A., Marzocco S., et al. Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment. Int J Mol Sci. 2017;18(10):E2121. doi: 10.3390/ijms18102121.
  15. Poelzing S., Rosenbaum D.S. Altered connexin43 expression produces arrhythmia substrate in heart failure. American Journal of Physiology. Heart and Circulatory Physiology. 2004;28(4):1762–70. Doi :10.1152/ajpheart.00346.2004.
  16. Swain S.M., Whaley F.S., Ewer M.S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79. doi: 10.1002/cncr.11407.
  17. Jensen B.V., Skovsgaard T., Nielsen S.L. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709. doi: 10.1093/annonc/mdf132.
  18. Ky B., Putt M., Sawaya H., et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63:809–16. doi: 10.1016/j.jacc.2013.10.061.
  19. Seidman A., Hudis C., Pierri M.K., et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21. doi: 10.1200/JCO.2002.20.5.1215.
  20. Suter T.M., Procter M., van Veldhuisen D.J., et al. Trastuzumab-associated cardiac adverse effects in the Herceptin adjuvant trial. J Clin Oncol. 2007;25:3859–65. doi: 10.1200/JCO.2006.09.1611.
  21. Slamon D., Eiermann W., Robert N., et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83. doi: 10.1056/NEJMoa0910383.
  22. Bowles E.J., Wellman R., Feigelson H.S., et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–305. doi: 10.1093/jnci/djs317.
  23. Sawaya H., Sebag I.A., Plana J.C., et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes and trastuzumab. Circ Cardiovasc Imaging. 2012;5:596–603. doi: 10.1161/CIRCIMAGING.112.973321.
  24. Kang Y.J., Chen Y., Epstein P.N. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem. 1996;271:12610–16. doi: 10.1074/jbc.271.21.12610.
  25. Lipshultz S.E., Cohen H., Colan S.D., Herman E.H. The relevance of information generated by in vitro experimental models to clinical doxorubicin cardiotoxicity. Leuk Lymphoma. 2006;47:1454–58. doi: 10.1080/10428190600800231.
  26. Curigliano G., et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171–90. doi: 10.1016/j.annonc.2019.10.023.
  27. Видаль Специалист Справочник «Онкология». М.: ЮБМ Медика Рус, 2013. 704 с. Vidal Specialist Directory “Oncology”. Moscow, 2013. 704 p. (In Russ.)].
  28. Чабнэр Б.Э. Руководство по онкологии. Пер. с англ. Под общ. ред. акад. РАЕН, проф. В.А. Хайленко. М.: Медпресс-информ, 2011. 656 c., ил. [Chabner B.E. Oncology Guide; translation from English. Under the general editorship of Academician of the Russian Academy of Natural Sciences, professor V.A. Khailenko. M.: Medpress-inform, 2011. 656 p., ill. (In Russ.)].
  29. Галибин О.В., Сударева Н.Н., Попрядухин П.В. и др. Ядра СаСО3 как компоненты систем адресной доставки доксорубицина для лечения солидных опухолей. Клеточная терапия и трансплантация. 2020;9(3). [Galibin O.V., Sudareva N.N., Popryadukhin P.V. et al. CaCO3 nuclei as components of targeted delivery systems for doxorubicin for the treatment of solid tumors. Cell therapy and transplantation. 2020;9(3). (In Russ.)]. doi: 10.18620/ctt-1866-8836-2020-9-3-1-152.

补充文件

附件文件
动作
1. JATS XML
2. Fig. Chemical structure of doxorubicin

下载 (162KB)

版权所有 © Bionika Media, 2024