Antiarrhythmic effects of sodium-glucose cotransporter-2 inhibitors: a review of studies and mechanisms of action

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Sodium-glucose cotransporter-2 inhibitors (SGLT2i), mainly used for the treatment of type 2 diabetes mellitus, have shown their potential benefits for the cardiovascular system. The direct effect of SGLT2i on the myocardium is widely recognized, their systemic effects also contribute to the cardioprotective effect within the framework of the «CаRеMe» concept of comorbidity in diabetes and a paradigm shift to a broader goal – reducing morbidity, mortality and target organs complications. Recent basic and clinical studies have shown that SGLT2i have antiarrhythmic effects. A number of meta-analyses have specifically focused on the effect of the SGLT2i class on the incidence of arrhythmias in different patient populations. A large meta-analysis of 34 RCTs assessing the effect of SGLT2i on arrhythmia-related outcomes showed a 19% reduction in the risk of AF (OR=0.81; P=0.008) and a 15% reduction in the risk of ventricular arrhythmias (OR=0.85; P=0.23). Other meta-analyses also confirmed a significant reduction in the AF/Aflu combination, but the effect on the risk of ventricular arrhythmias was not significant. Specific meta-analyses assessing the effect of SGLT2i on the risk of AF and stroke did not find significant differences in the incidence of stroke (OR=0.99). A recent analysis of the FDA Adverse Event Reporting System (USA) found a lower incidence of AF in diabetic patients treated with SGLT2 inhibitors compared with other antidiabetic agents (OR=0.55; P<0.001), including OR=0.47 for canagliflozin, OR=0.51 for dapagliflozin, and OR=0.71 for empagliflozin. Numerous mechanisms have been discussed as to the antiarrhythmic action of SGLT2 inhibitors, including direct effects such as activation of ketone bodies, utilization of free fatty acids that change the energy supply of the myocardium, counteraction of harmful intracellular changes and disturbances of ion homeostasis, anti-inflammatory action, modulation of sympathetic influences on the heart, as well as indirect effects including osmotic diuresis, reduction of blood pressure, hemodynamic load, cardiac remodeling and body weight.

Thus, SGLT2i have proven themselves in clinical practice, and the corresponding clinical studies and basic experiments have shown that they have an antiarrhythmic effect, however, the significance of SGLT2i for the treatment of arrhythmias and the exact extent of their influence will be clarified in new large clinical trials.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Leonova

Interregional Public Organization “Association of Clinical Pharmacologists”, Moscow branch

Хат алмасуға жауапты Автор.
Email: anti23@mail.ru
ORCID iD: 0000-0001-8228-1114

Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Natural Sciences, Member of the Interregional Public Organization «Association of Clinical Pharmacologists» (Moscow Branch)

Ресей, Moscow

Әдебиет тізімі

  1. McDonagh T., Metra M., Adamo M. et al. ESC Scientific Document Group, 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42(36):3599 –26. doi: 10.1093/eurheartj/ehab368.
  2. Zelniker T.A., Wiviott S.D., Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–9. doi: 10.1016/S0140-6736(18)32590-X.
  3. Arnold S.V., Kosiborod M., Wang J. et al. Burden of cardio-renal-metabolic conditions in adults with type 2 diabetes within the Diabetes Collaborative Registry. Diabetes Obes Metab. 2018;20(8):2000–2003. doi: 10.1111/dom.13303.
  4. Wu J., Liu Y., Wei X. et al. Antiarrhythmic effects and mechanisms of sodium-glucose cotransporter 2 inhibitors: a mini review. Front Cardiovasc Med. 2022;9:915455. doi: 10.3389/fcvm.2022.915455.
  5. Zeppenfeld K., Tfelt-Hansen J., de Riva M. et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40):3997–4126. doi: 10.1093/eurheartj/ehac262.
  6. Hindricks G., Potpara T., Dagres N. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the Еuropean society of cardiology (ESC) developed with the special contribution of the Еuropean heart rhythm association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498. doi: 10.1093/eurheartj/ehaa612.
  7. Aune D., Schlesinger S., Norat T., Riboli E. Diabetes mellitus and the risk of sudden cardiac death: a systematic review and meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis. 2018;28(6):543–56. doi: 10.1016/j.numecd.2018.02.011.
  8. Usman M.S., Siddiqi T.J., Memon M.M. et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):495–502. doi: 10.1177/2047487318755531.
  9. Fernandes G.C., Fernandes A., Cardoso R. et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Heart Rhythm. 2021;18(7):1098–105. doi: 10.1016/j.hrthm.2021.03.028.
  10. Li H.L., Lip G.Y.H., Feng Q. et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20(1):100. doi: 10.1186/s12933-021-01293-8.
  11. Xu B., Kang B., Zhou J. Sodium glucose cotransporter 2 inhibitors with cardiac arrhythmias in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Res Cardiol. 2024 Jun;113(6):910–23. doi: 10.1007/s00392-024-02386-6
  12. Wang X., Zhang X., Zhang W. et al. Association of sodium-glucose cotransporter 2 inhibitors (SGLT2i) with cardiac arrhythmias: a systematic review and meta-analysis of cardiovascular outcome trials. Rev. Cardiovasc. Med. 2023;24(9):258. doi: 10.31083/j.rcm2409258.
  13. Sfairopoulos D., Zhang N., Wang Y. et al. Association between sodium-glucose cotransporter-2 inhibitors and risk of sudden cardiac death or ventricular arrhythmias: a meta-analysis of randomized controlled trials. Europace. 2022;24(1):20–30. doi: 10.1093/europace/euab177.
  14. Yin Z., Zheng H., Guo Z. Effect of sodium-glucose co-transporter protein 2 inhibitors on arrhythmia in heart failure patients with or without type 2 diabetes: a meta-analysis of randomized controlled trials. Front Cardiovasc Med. 2022;9:902923. doi: 10.3389/fcvm.2022.902923.
  15. Liao J., Ebrahimi R., Ling Z. et al. Effect of SGLT-2 inhibitors on arrhythmia events: insight from an updated secondary analysis of > 80,000 patients (the SGLT2i-Arrhythmias and Sudden Cardiac Death). Cardiovasc Diabetol. 2024;23(1):78. doi: 10.1186/s12933-024-02137-x.
  16. Bell D.S.H., Goncalves E. Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes Metab. 2019;21(2):210–17. doi: 10.1111/dom.13512.
  17. Zelniker T.A., Bonaca M.P., Furtado R.H.M. et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial. Circulation. 2020;141(15):1227–34. doi: 10.1161/CIRCULATIONAHA.119.044183.
  18. Okunrintemi V., Mishriky B.M., Powell J.R., Cummings D.M. Sodium-glucose co-transporter-2 inhibitors and atrial fibrillation in the cardiovascular and renal outcome trials. Diabetes Obes Metab. 2021;23(1):276–80. doi: 10.1111/dom.14211.
  19. Pandey A.K., Okaj I., Kaur H. et al. Sodium-glucose co-transporter inhibitors and atrial fibrillation: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2021;10(17):e022222. doi: 10.1161/JAHA.121.022222.
  20. Zheng S., Lai Y., Jiang C. et al. Effect of SGLT2 inhibitors on cardiovascular events in patients with atrial fibrillation: a systematic review and meta-analysis of randomized controlled trials. Pacing Clin Electrophysiol. 2024 Jan;47(1):58–65. doi: 10.1111/pace.14880.
  21. Jang J., Park S., Kim S. et al. Clinical outcomes with the use of sodium-glucose cotransporter-2 inhibitors in patients with atrial fibrillation and type 2 diabetes mellitus: a multi-centre, real-world cohort study. Eur J Prev Cardiol. 2024 Feb 15;31(3):320–29. doi: 10.1093/eurjpc/zwad322.
  22. Zheng R.J., Wang Y., Tang J.N. et al. Association of SGLT2 inhibitors with risk of trial fibrillation and stroke in patients with and without type 2 diabetes: a systemic review and meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol. 2022;79(2):e145–e152. doi: 10.1097/FJC.0000000000001183.
  23. Bonora B.M., Raschi E., Avogaro A., Fadini G.P. SGLT-2 inhibitors and atrial fibrillation in the Food and Drug Administration adverse event reporting system. Cardiovasc Diabetol. 2021;20(1):39. doi: 10.1186/s12933-021-01243-4.
  24. Li W.J., Chen X.Q., Xu L.L. et al. SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol. 2020;19(1):130. doi: 10.1186/s12933-020-01105-5.
  25. Li D., Liu Y., Hidru T.H. et al. Protective effects of sodium-glucose transporter 2 inhibitors on atrial fibrillation and atrial flutter: a systematic review and meta-analysis of randomized placebo-controlled trials. Front Endocrinol (Lausanne). 2021;12:619586. doi: 10.3389/fendo.2021.619586.
  26. Sfairopoulos D., Liu T., Zhang N. et al. Association between sodium-glucose cotransporter-2 inhibitors and incident atrial fibrillation/atrial flutter in heart failure patients with reduced ejection fraction: a meta-analysis of randomized controlled trials. Heart Fail Rev. 2023;28(4):925–36. doi: 10.1007/s10741-022-10281-3.
  27. Aistrup G.L., Balke C.W., Wasserstrom J.A. Arrhythmia triggers in heart failure: the smoking gun of [Ca2+]i dysregulation. Heart Rhythm. 2011;8(11):1804–808. doi: 10.1016/j.hrthm.2011.06.012.
  28. Jing Y., Yang R., Chen W., Ye Q. Anti-arrhythmic effects of sodium-glucose co-transporter 2 inhibitors. Front Pharmacol. 2022;13:898718. doi: 10.3389/fphar.2022.898718.
  29. Kolesnik E., Scherr D., Rohrer U. et al. SGLT2 inhibitors and their antiarrhythmic properties. Int J Mol Sci. 2022;23(3):1678. doi: 10.3390/ijms23031678.
  30. Manolis A.A., Manolis T.A., Melita H., Manolis A.S. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc Med. 2023;33(7):418–28. doi: 10.1016/j.tcm.2022.04.003.
  31. Pau, A., Tabaja C., Wazni O. SGLT2 inhibitors and the cardiac rhythm: unraveling the connections. Int J Arrhythm. 2024;25:2.
  32. Ferrannini E., Mark M., Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a «thrifty substrate» hypothesis. Diabetes Care. 2016;39(7):1108–14. doi: 10.2337/dc16-0330.
  33. Maruyama T., Takashima H., Oguma H. et al. Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther. 2019;21(12):713–20. doi: 10.1089/dia.2019.0212.
  34. Shattock M.J., Ottolia M., Bers D.M. et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol. 2015;593(6):1361–82. doi: 10.1113/jphysiol.2014.282319.
  35. Janse M.J. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res. 2004;61(2):208–17. doi: 10.1016/j.cardiores.2003.11.018.
  36. Rochette L., Zeller M., Cottin Y., Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta. 2014;1840(9):2709–29. doi: 10.1016/j.bbagen.2014.05.017.
  37. Hamouda N.N., Sydorenko V., Qureshi M.A. et al. Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015;400(1-2):57–68. doi: 10.1007/s11010-014-2262-5.
  38. Baartscheer A., Schumacher C.A., Wьst R.C. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60(3):568–73. doi: 10.1007/s00125-016-4134-x.
  39. Verma S., McMurray J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17. doi: 10.1007/s00125-018-4670-7.
  40. Lopaschuk G.D., Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44. doi: 10.1016/j.jacbts.2020.02.004.
  41. Baker W.L., Smyth L.R., Riche D.M. et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–75.e9. doi: 10.1016/j.jash.2014.01.007.
  42. Mazidi M., Rezaie P., Gao H.K., Kengne A.P. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6):e004007. doi: 10.1161/JAHA.116.004007.
  43. Jhuo S.J., Liu I.H., Tsai W.C. et al. Effects of secretome from fat tissues on ion currents of cardiomyocyte modulated by sodium-glucose transporter 2 inhibitor. Molecules. 2020;25(16):3606. doi: 10.3390/molecules25163606.
  44. Sato T., Aizawa Y., Yuasa S. et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6. doi: 10.1186/s12933-017-0658-8.
  45. Chan Y.H., Chen S.W., Chao T.F. et al. The impact of weight loss related to risk of new-onset atrial fibrillation in patients with type 2 diabetes mellitus treated with sodium-glucose cotransporter 2 inhibitor. Cardiovasc Diabetol. 2021;20(1):93. doi: 10.1186/s12933-021-01285-8.
  46. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71(5):471-476. doi: 10.1016/j.jjcc.2017.12.004
  47. The Effect of SGLT-2 Inhibitor in Patient With Atrial Fibrillation and Diabetes Mellitus. ClinicalTrials.gov ID NCT05029115. URL: https://clinicaltrials.gov/study/NCT05029115
  48. Effect of Sodium Glucose Co-transporter 2 Inhibitors on Left Atrial Remodeling. ClinicalTrials.gov ID NCT05993897. URL: https://clinicaltrials.gov/study/NCT05993897
  49. Dapagliflozin in Patients With Atrial Fibrillation (DAPA-AF). ClinicalTrials.gov ID NCT05174052. URL: https://clinicaltrials.gov/study/NCT05174052
  50. Empagliflozin Versus Placebo on the Rate of Arrhythmic Events in Heart Failure Patients (ERA-HF). ClinicalTrials.gov ID NCT03271879. URL: https://clinicaltrials.gov/study/NCT03271879

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. Possible mechanisms of antiarrhythmic action of NGLT2. Adapted from [10], printed with additions

Жүктеу (142KB)

© Bionika Media, 2024