The diagnostic value of determining fibrosis biomarkers in patients with atrial fibrillation and coronary artery disease
- Authors: Kochetkov A.I.1, Dubinina A.V.1, Gavrilova N.E.1,2, Korotkova T.N.3, Vorozhko I.V.3, Starodubova A.V.3,4, Mirzaev K.B.1, Ostroumova O.D.1
-
Affiliations:
- Russian Medical Academy of Continuous Professional Education
- «Scandinavian Health Center» LLC
- Federal Research Centre of Nutrition and Biotechnology
- Pirogov Russian National Research Medical University
- Issue: Vol 32, No 1 (2025)
- Pages: 34-41
- Section: Cardiology
- URL: https://journals.eco-vector.com/2073-4034/article/view/679904
- DOI: https://doi.org/10.18565/pharmateca.2025.1.34-41
- ID: 679904
Cite item
Abstract
Background. The combination of atrial fibrillation (AF) and acute coronary syndrome (ACS) is common in the population and entails increased risks of adverse cardiovascular events and a worse prognosis. Myocardial fibrosis forms the basis of the pathophysiology of both AF and coronary artery disease. Noninvasive fibrosis markers allow for early diagnosis of fibrotic myocardial remodeling and the development of new therapeutic strategies for patient management.
Objective: to assess the association between circulating myocardial fibrosis biomarkers and echocardiographic stiffness parameters in patients with atrial fibrillation (AF) after acute coronary syndrome (ACS).
Methods. A cohort open prospective study was conducted with a total of 66 patients (median age 71.5 [63.8; 77.3] years, 63.6% men) with AF after ACS at least 3 months ago but not more than a year ago. Serum levels of procollagen type I carboxy-terminal propeptide (PICP), procollagen type III N-terminal propeptide (PIIINP), transforming growth factor beta-1 (TGF-β1), galectin-3 (Gal-3) were determined. All patients also underwent routine 2D transthoracic echocardiography and speckle tracking echocardiography. The relationship between laboratory and echocardiographic parameters was analyzed using linear and logistic regression.
Findings. A significant strong positive linear relationship was revealed between the PICP levels and the average left ventricular end-diastolic volume (LVEDV) (R2=0.137, stand. β=0,371), the LVEDV index (R2=0.122, stand. β=0,350), the left ventricular global longitudinal strain (LV GLS) (R2=0.090, stand. β=0,300) and the LV GLS rate (R2=0.069, stand. β=-0,256) (p<0.05 for all). And a significant strong negative linear relationship was revealed between TGF-β1 levels and the left atrial (LA) expansion index (p=0.014, R2=0.094, stand. β=-0.306). During logistic regression, an increase in PIIINP concentration was statistically significantly associated with a decrease in the LP extensibility index (less than the median of 0.3) (Odds Ratio 1.11 (95% Confidence Interval: 1.01–1.21), p=0.018).
Conclusion. The data obtained expand the available limited literature information on the relationship between laboratory and instrumental parameters of LP and LV fibrosis.
Full Text

About the authors
Alexey I. Kochetkov
Russian Medical Academy of Continuous Professional Education
Email: ak_info@list.ru
ORCID iD: 0000-0001-5801-3742
Cand. Sci. (Med.), Associate Professor of the Department of Therapy and Polymorbid Pathology named after Academician M.S. Vovsi
Russian Federation, MoscowAnna V. Dubinina
Russian Medical Academy of Continuous Professional Education
Email: dubinina_anna2023@mail.ru
ORCID iD: 0009-0008-6383-0016
2nd year Postgraduate Student of the Department of Therapy and Polymorbid Pathology named after Academician M.S. Vovsi
Russian Federation, MoscowNatalia E. Gavrilova
Russian Medical Academy of Continuous Professional Education; «Scandinavian Health Center» LLC
Email: natysja2004@yandex.ru
ORCID iD: 0000-0003-4624-9189
Dr. Sci. (Med.), Professor of the Department of therapy and multimorbid pathology named after Academician M.S. Vovsi, General Director – Chief Physician of Scandinavian Healthcare
Russian Federation, Moscow; MoscowTatyana N. Korotkova
Federal Research Centre of Nutrition and Biotechnology
Email: tntisha@gmail.com
ORCID iD: 0000-0002-3684-9992
Cand. Sci. (Med.), Head of the Laboratory of Clinical Biochemistry, Immunology and Allergology
Russian Federation, MoscowIlya V. Vorozhko
Federal Research Centre of Nutrition and Biotechnology
Email: bio455@inbox.ru
ORCID iD: 0000-0003-2529-9152
Cand. Sci. (Med.), Senior research fellow of the Laboratory of Clinical Biochemistry, Immunology and Allergology
Russian Federation, MoscowAntonina V. Starodubova
Federal Research Centre of Nutrition and Biotechnology; Pirogov Russian National Research Medical University
Email: lechebnoedelo@yandex.ru
ORCID iD: 0000-0001-9262-9233
Dr. Sci. (Med.), Deputy Director for Scientific and Medical Work, Professor
Russian Federation, Moscow; MoscowKarin B. Mirzaev
Russian Medical Academy of Continuous Professional Education
Email: karin05doc@yandex.ru
ORCID iD: 0000-0002-9307-4994
Dr. Sci. (Med.), Associate Professor, Vice-Rector for Research and Innovation, Director of Research Institute of Molecular and Personalized Medicine, Professor of the Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal
Russian Federation, MoscowOlga D. Ostroumova
Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0002-0795-8225
SPIN-code: 3910-6585
Dr. Sci. (Med.), Professor, Head of the Department of Therapy and Polymorbid Pathology named after Academician M.S. Vovsi
Russian Federation, MoscowReferences
- Lippi G., Sanchis-Gomar F., Cervellin G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge [published correction appears in Int J Stroke. 2020 Dec;15(9):NP11-NP12. doi: 10.1177/1747493020905964]. Int J Stroke. 2021;16(2):217–221. doi: 10.1177/1747493019897870.
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788. doi: 10.1016/S0140-6736(18)32203-7.
- Byrne R.A., Rossello X., Coughlan J.J., et al. 2023 ESC Guidelines for the management of acute coronary syndromes [published correction appears in Eur Heart J. 2024 Apr 1;45(13):1145. doi: 10.1093/eurheartj/ehad870.]. Eur Heart J. 2023;44(38):3720–3826. doi: 10.1093/eurheartj/ehad191.
- Noubiap J.J., Agbaedeng T.A., Nyaga U.F., et al. Atrial fibrillation incidence, prevalence, predictors, and adverse outcomes in acute coronary syndromes: a pooled analysis of data from 8 million patients. J Cardiovasc Electrophysiol. 2022;33(3):414–422. doi: 10.1111/jce.15351.
- Batra G., Ahlsson A., Lindahl B., et al. Atrial fibrillation in patients undergoing coronary artery surgery is associated with adverse outcome. Ups J Med Sci. 2019;124(1):70–77. doi: 10.1080/03009734.2018.1504148.
- Li G., Yang J., Zhang D., et al. Research progress of myocardial fibrosis and atrial fibrillation. Front Cardiovasc Med. 2022;9:889706. doi: 10.3389/fcvm.2022.889706.
- Weber K.T., Janicki J.S., Shroff S.G., et al. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res. 1988;62:757–765.
- Quah J.X., Dharmaprani D., Tiver K., et al. Atrial fibrosis and substrate based characterization in atrial fibrillation: Time to move forwards. J Cardiovasc Electrophysiol. 2021;32(4):1147–1160. doi: 10.1111/jce.14987.
- Akoum N., Morris A., Perry D., et al. Substrate modification is a better predictor of catheter ablation success in atrial fibrillation than pulmonary vein isolation: an LGE-MRI Study. Clin Med Insights Cardiol. 2015;9:25–31. doi: 10.4137/CMC.S22100.
- Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017;3(5):425–435. doi: 10.1016/j.jacep.2017.03.002.
- Donal E., Lip G.Y., Galderisi M., et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2016;17(4):355–383. doi: 10.1093/ehjci/jev354.
- Abubakar M., Irfan U., Abdelkhalek A., et al. Comprehensive quality analysis of conventional and novel biomarkers in diagnosing and predicting prognosis of coronary artery disease, acute coronary syndrome, and heart failure, a comprehensive literature review. J Cardiovasc Transl Res. 2024;17(6):1258–1285. doi: 10.1007/s12265-024-10540-8.
- Lopez-Andrs N., Rossignol P., Iraqi W., et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012;14(1):74–81. doi: 10.1093/eurjhf/hfr151.
- Li X., Ma C., Dong J., et al. The fibrosis and atrial fibrillation: is the transforming growth factor-beta 1 a candidate etiology of atrial fibrillation. Med Hypotheses. 2008;70(2):317–319. doi: 10.1016/j.mehy.2007.04.046.
- Dong R., Zhang M., Hu Q., et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (review). Int J Mol Med. 2018;41(2):599–614. doi: 10.3892/ijmm.2017.3311.
- Zghaib T., Keramati A., Chrispin J., et al. Multimodal examination of atrial fibrillation substrate: correlation of left atrial bipolar voltage using multi-electrode fast automated mapping, point-by-point mapping, and magnetic resonance image intensity ratio. JACC Clin Electrophysiol. 2018;4(1):59–68. doi: 10.1016/j.jacep.2017.10.010.
- Gramley F., Lorenzen J., Koellensperger E., et al. Atrial fibrosis and atrial fibrillation: the role of the TGF-1 signaling pathway. Int J Cardiol. 2010;143(3):405–413. doi: 10.1016/j.ijcard.2009.03.110.
- Clementy N., Garcia B., Andr C., et al. Galectin-3 level predicts response to ablation and outcomes in patients with persistent atrial fibrillation and systolic heart failure. PLoS One. 2018;13(8):e0201517. doi: 10.1371/journal.pone.0201517.
- Barasch E., Gottdiener J.S., Aurigemma G., et al. The relationship between serum markers of collagen turnover and cardiovascular outcome in the elderly: the Cardiovascular Health Study. Circ Heart Fail. 2011;4(6):733–739. doi: 10.1161/CIRCHEARTFAILURE.111.962027.
- Lang R.M., Badano L.P., Mor-Avi V., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. doi: 10.1016/j.echo.2014.10.003.
- Galderisi M., Cosyns B., Edvardsen T., et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18(12):1301–1310. doi: 10.1093/ehjci/jex244.
- Nagueh S.F., Smiseth O.A., Appleton C.P., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. doi: 10.1016/j.echo.2016.01.011.
- Badano L.P., Kolias T.J., Muraru D., et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging [published correction appears in Eur Heart J Cardiovasc Imaging. 2018;19(7):830–833. doi: 10.1093/ehjci/jey071.]. Eur Heart J Cardiovasc Imaging. 2018;19(6):591-600. doi: 10.1093/ehjci/jey042.
- Mor-Avi V., Lang R.M., Badano L.P., et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications: endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313. doi: 10.1016/j.echo.2011.01.015.
- Takino T., Nakamura M., Hiramori K. Circulating levels of carboxyterminal propeptide of type I procollagen and left ventricular remodeling after myocardial infarction. Cardiology. 1999;91(2):81–86. doi: 10.1159/000006884.
- Magga J., Puhakka M., Hietakorpi S., et al. Atrial natriuretic peptide, B-type natriuretic peptide, and serum collagen markers after acute myocardial infarction. J Appl Physiol. 2004;96(4):1306–1311. doi: 10.1152/japplphysiol.00557.2003.
- Jirmar R., Pelouch V., Widimsky P., et al. Influence of primary coronary intervention on myocardial collagen metabolism and left ventricle remodeling predicted by collagen metabolism markers. Int Heart J. 2005;46(6):949–959. doi: 10.1536/ihj.46.949.
- Kallergis E.M., Manios E.G., Kanoupakis E.M., et al. Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: biochemical assessment of collagen type-I turnover. J Am Coll Cardiol. 2008;52(3):211–215. doi: 10.1016/j.jacc.2008.03.045.
- Sonmez O., Ertem F.U., Vatankulu M.A., et al. Novel fibro-inflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation. Med Sci Monit. 2014;20:463–470. doi: 10.12659/MSM.890635.
- Pilichowska-Paszkiet E., Baran J., Sygitowicz G., et al. Noninvasive assessment of left atrial fibrosis. Correlation between echocardiography, biomarkers, and electroanatomical mapping. Echocardiography. 2018;35(9):1326–1334. doi: 10.1111/echo.14043.
- Travers J.G., Kamal F.A., Robbins J., et al. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–1040. doi: 10.1161/CIRCRESAHA.115.306565.
- Dziao E., Tkacz K., Byszczuk P. Crosstalk between the TGF-β and WNT signalling pathways during cardiac fibrogenesis. Acta Biochim Pol. 2018;65(3):341–349. doi: 10.18388/abp.2018_2635.
- Zhao F., Zhang S., Chen Y., et al. Increased expression of NF-AT3 and NF-AT4 in the atria correlates with procollagen I carboxyl terminal peptide and TGF-1 levels in serum of patients with atrial fibrillation. BMC Cardiovasc Disord. 2014;14:167. doi: 10.1186/1471-2261-14-167.
- Tian Y., Wang Y., Chen W., et al. Role of serum TGF-1 level in atrial fibrosis and outcome after catheter ablation for paroxysmal atrial fibrillation. Medicine (Baltimore). 2017;96(51):e9210. doi: 10.1097/MD.0000000000009210.
- Liu Y., Niu X.H., Yin X., et al. Elevated circulating fibrocytes is a marker of left atrial Fibrosis and recurrence of persistent atrial fibrillation. J Am Heart Assoc. 2018;7(6):e008083. doi: 10.1161/JAHA.117.008083.
- Kim S.K., Park J.H., Kim J.Y., et al. High plasma concentrations of transforming growth factor-β and tissue inhibitor of metalloproteinase-1: potential non-invasive predictors for electroanatomical remodeling of atrium in patients with non-valvular atrial fibrillation [published correction appears in Circ J. 2011;75(4):1013.]. Circ J. 2011;75(3):557–564. doi: 10.1253/circj.cj-10-0758
- Zhao L., Li S., Zhang C., et al. Cardiovascular magnetic resonance-determined left ventricular myocardium impairment is associated with C-reactive protein and ST2 in patients with paroxysmal atrial fibrillation. J Cardiovasc Magn Reson. 2021;23(1):30. doi: 10.1186/s12968-021-00732-5.
- Tsang T.S., Barnes M.E., Bailey K.R., et al. Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin Proc. 2001;76(5):467–475. doi: 10.4065/76.5.467.
- Beinart R., Boyko V., Schwammenthal E., et al. Long-term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol. 2004;44(2):327–334. doi: 10.1016/j.jacc.2004.03.062.
- Sabharwal N., Cemin R., Rajan K., et al. Usefulness of left atrial volume as a predictor of mortality in patients with ischemic cardiomyopathy. Am J Cardiol. 2004;94(6):760–763. doi: 10.1016/j.amjcard.2004.05.060.
- Moller J.E., Hillis G.S., Oh J.K., et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation. 2003;107(17):2207–2212. doi: 10.1161/01.CIR.0000066318.21784.43
- Pritchett A.M., Jacobsen S.J., Mahoney D.W., et al. Left atrial volume as an index of left atrial size: a population-based study. J Am Coll Cardiol. 2003;41(6):1036–1043. doi: 10.1016/s0735-1097(02)02981-9.
- Mariana Barros Melo da Silveira M., Victor Batista Cabral J., Tavares Xavier A., et al. The role of galectin-3 in patients with permanent and paroxysmal atrial fibrillation and echocardiographic parameters of left atrial fibrosis. Mol Biol Rep. 2023;50(11):9019–9027. doi: 10.1007/s11033-023-08774-x.
- Waek P., Grabowska U., Ciea E., et al. Analysis of the correlation of galectin-3 concentration with the measurements of echocardiographic parameters assessing left atrial remodeling and function in patients with persistent atrial fibrillation. Biomolecules. 2021;11(8):1108. Published 2021 Jul 28. doi: 10.3390/biom11081108.
Supplementary files
