Chronic pain and sleep disorders

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Pain is often accompanied by sleep disorders, which manifest themselves in insufficient duration or quality of sleep. The relationship between pain and sleep is bidirectional: pain can disrupt sleep, and poor sleep in turn reduces the pain threshold and increases spontaneous pain. Like chronic pain, sleep disorders are a serious public health problem that affects overall health. A recent meta-analysis found a high prevalence of sleep disturbances in people with chronic pain, including insomnia (72%), obstructive sleep apnea (32%), and restless legs syndrome (32%). There is evidence that short or disrupted sleep can cause hyperalgesia (i.e., increased sensitivity to painful stimuli) and the development or exacerbation of spontaneous pain attacks (eg, muscle pain, headache). Current understanding of the neurobiological mechanisms of pain involves the opioid, monoaminergic, orexinergic, immune, melatonin, endocannabinoid, hypothalamic-pituitary-adrenal, and adenosine signaling systems, some of which are reviewed in this article. The clinical implications of the bidirectional relationship between sleep and pain should be considered in pain management. A large-scale study demonstrated that short-term improvement in insomnia symptoms predicted both long-term improvement in sleep and reduction in pain, regardless of the treatment method – pharmacological or non-pharmacological, which supports the hypothesis that improved sleep can lead to more effective pain relief and should serve as a basis for the development of new drugs and, possibly, behavioral treatments that could help manage or relieve pain, potentially affecting the common mechanisms regulating sleep and pain.

全文:

受限制的访问

作者简介

Olga Kotova

Faculty of Continuous Medical Education, Medical Institute, Patrice Lumumba People’s Friendship University of Russia; International Society “Stress under Control”

编辑信件的主要联系方式.
Email: ol_kotova@mail.ru
ORCID iD: 0000-0002-3908-0381

Cand. Sci. (Med.), Neurologist, Psychiatrist, Associate Professor at the Department of Psychiatry, Psychotherapy and Psychosomatic Pathology, Medical Institute, Vice President of the International Society

俄罗斯联邦, Moscow; Moscow

Anton Belyaev

Research Institute for Emergency Medicine named after N.V. Sklifosovsky

Email: ol_kotova@mail.ru
ORCID iD: 0000-0002-7186-870X

Neurologist, Junior Researcher, Department of Emergency Vascular Surgery, Research Institute for Emergency Medicine named after N.V. Sklifosovsky, Moscow, Russia

俄罗斯联邦, Moscow

Sofya Melik-Arakelyan

Pirogov Russian National Research Medical University (Pirogov University)

Email: ol_kotova@mail.ru
ORCID iD: 0009-0008-0969-1756

Student, Institute of Maternity and Childhood

俄罗斯联邦, Moscow

参考

  1. Яхно Н.Н., Кукушкин М.Л., Чурюканов М.В. и др. Новое определение боли Международной ассоциации по изучению боли. Российский журнал боли. 2020;18(4):5–7. [Yakhno N.N., Kukushkin M.L., Churyukanov M.V., et al. New definition of pain by the international association for the study of pain. Rus J Pain. 2020;18(4):5–7. (In Russ.)]. doi: 10.17116/pain2020180415.
  2. Andersen M.L., Araujo P., Frange C., Tufik S. Sleep Disturbance and Pain: A Tale of Two Common Problems. Chest. 2018;154:1249–59 doi: 10.1016/j.chest.2018.07.019.
  3. Li M.T., Robinson C.L., Ruan Q.Z., et al. The Influence of Sleep Disturbance on Chronic Pain. Curr Pain Headache Rep. 2022;26:795–804. doi: 10.1007/s11916-022-01074-2.
  4. Медведев В.Э., Котова О.В., Акарачкова Е.С., Беляев А.А. Инсомния в психиатрии и общей медицине: структура расстройства и современные методы терапии. Современная терапия в психиатрии и неврологии. 2024;1:34–40. [Medvedev V.E., Kotova O.V., Akarachkova E.S., Belyaev A.A. Insomnia in psychiatry and general medicine: the structure of the disorder and modern methods of therapy. Sovremennaya Terapiya v Psikhiatrii i Nevrologii. 2024;(1):34–40. (In Russ.)].
  5. Mathias J.L., Cant M.L., Burke A.L.J. Sleep disturbances and sleep disorders in adults living with chronic pain: a meta-analysis. Sleep Med. 2018;52:198–210. doi: 10.1016/j.sleep.2018.05.023.
  6. Afolalu E.F., Ramlee F., Tang N.K.Y. Effects of sleep changes on pain-related health outcomes in the general population: a systematic review of longitudinal studies with exploratory meta-analysis. Sleep Med Rev. 2018;39:82–97. doi: 10.1016/j.smrv.2017.08.001.
  7. Finan P.H., Goodin B.R., Smith M.T. The association of sleep and pain: an update and a path forward. J Pain. 2013;14:1539–52. doi: 10.1016/j.jpain.2013.08.007.
  8. Haack M., Simpson N., Sethna N., et al. Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacol. 2020;45(1):205–16. doi: 10.1038/s41386-019-0439-z.
  9. Whibley D., AlKandari N., Kristensen K., et al. Sleep and Pain: A Systematic Review of Studies of Mediation. Clin J Pain. 2019;35(6):544–58. doi: 10.1097/ajp.0000000000000697.
  10. Karimi R., Mallah N., Scherer R., et al. Sleep quality as a mediator of the relation between depression and chronic pain: a systematic review and meta-analysis. Br J Anaesth. 2023;130(6):747–62. doi: 10.1016/j.bja.2023.02.036.
  11. Seiger A.N., Penzel T., Fietze I. Chronic pain management and sleep disorders. Cell Rep Med. 2024;5(10):101761. doi: 10.1016/j.xcrm.2024.101761.
  12. Woolf C.J. Pain: Moving from symptom control toward mechanism-specific pharmacologic management. Ann Int Med. 2004;140(6):441–51. doi: 10.7326/0003-4819-140-8-200404200-00010.
  13. Ferdousi M., Finn D.P. Stress-induced modulation of pain: role of the endogenous opioid system. The Opioid System as the Interface between the Brain’s Cognitive and Motivational Systems. Progress Brain Res. 2018;239:121–77. doi: 10.1016/bs.pbr.2018.07.002.
  14. Zubieta J.K., Smith Y.R., Bueller J.A., et al. Regional MU opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293(5528):311–5. doi: 10.1126/science.1060952.
  15. Lee Y.C., Nassikas N.J., Clauw D.J. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthr Res Ther. 2011;13(2):211. doi: 10.1186/ar3306.
  16. Nascimento D.C., Andersen M.L., Hipolide D.C., et al. Pain hypersensitivity induced by paradoxical sleep deprivation is not due to altered binding to brain mu-opioid receptors. Behavioural Brain Res. 2007;178(2):216–20. doi: 10.1016/j.bbr.2006.12.016.
  17. Smith M.T., Edwards R.R., McCann U.D., Haythornthwaite J.A. The effects of sleep deprivation on pain inhibition and spontaneous pain in women. Sleep. 2007;30(4):494–505. doi: 10.1093/sleep/30.4.494.
  18. Haack M., Scott-Sutherland J., Santangelo G., et al. Pain sensitivity and modulation in primary insomnia. Eur J Pain. 2012;16(4):522–33. doi: 10.1016/j.ejpain.2011.07.007.
  19. Steen K.H., Steen A.E., Reeh P.W. A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in-vitro. J Neurosci. 1995;15(5):3982–9. doi: 10.1523/jneurosci.15-05-03982.1995.
  20. Viguier F., Michot B., Hamon M., Bourgoin S. Multiple roles of serotonin in pain control mechanisms -Implications of 5-HT7 and other 5-HT receptor types. Eur J Pharmacol. 2013;716(1–3):8–16. Doi: 1016/j.ejphar.2013.01.074.
  21. Monti J.M. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81. doi: 10.1016/j.smrv.2010.11.003.
  22. Zant J.C., Leenaars C.H.C., Kostin A., et al. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res. 2011;1399:40–8. doi: 10.1016/j.brainres.2011.05.008.
  23. Meerlo P., Sgoifo A., Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–210. doi: 10.1016/j.smrv.2007.07.007.
  24. Berridge C.W., Schmeichel B.E., Espana R.A. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012;16(2):187–97. doi: 10.1016/j.smrv.2011.12.003.
  25. Basheer R., Magner M., Mccarley R.W., Shiromani P..J. REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Mol Brain Res. 1998;57(2):235–40. doi: 10.1016/s0169-328x(98)00088-6.
  26. Irwin M., Thompson J., Miller C., et al. Effects of sleep and sleep deprivation on catecholamine and interleukin- 2 levels in humans: clinical implications. J Clin Endocrinol Metab. 1999;84(6):1979–85. doi: 10.1210/jc.84.6.1979.
  27. Marks D.M., Shah M.J., Patkar A.A., et al. Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise. Curr Neuropharmacol. 2009;7(4):331–6. doi: 10.2174/157015909790031201.
  28. Koh K., Hamada A., Hamada Y., et al. Possible involvement of activated locus coeruleus-noradrenergic neurons in pain-related sleep disorders. Neurosci Letters. 2015;589:200–6. doi: 10.1016/j.neulet.2014.12.002.
  29. Finan P.H., Smith M.T. The comorbidity of insomnia, chronic pain, and depression: dopamine as a putative mechanism. Sleep Med Rev. 2013;17(3):173–83. doi: 10.1016/j.smrv.2012.03.003.
  30. Brown R.E., Basheer R., McKenna J.T., et al. Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–187. doi: 10.1152/physrev.00032.2011.
  31. Alexandre C., Latremoliere A., Ferreira A., et al. Decreased alertness due to sleep loss increases pain sensitivity in mice. Nature Med. 2017;23(6):768–74. doi: 10.1038/nm.4329.
  32. Sardi N.F., Tobaldini G., Morais R.N., Fischer L. Nucleus accumbens mediates the pronociceptive effect of sleep deprivation: the role of adenosine A2A and dopamine D2 receptors. Pain. 2018;159(1):75–84. doi: 10.1097/j.pain.0000000000001066.
  33. Date Y., Mondal M.S., Matsukura S., Nakazato M. Distribution of orexin-A and orexin-B (hypocretins) in the rat spinal cord. Neurosci Letters. 2000;288(2):87–90. doi: 10.1016/s0304-3940(00)01195-2.
  34. Mahoney C.E., Cogswell A., Koralnik I.J., Scammell T.E. The neurobiological basis of narcolepsy. Nat Rev Neurosci. 2019;20(2):83–93. doi: 10.1038/s41583-018-0097-x.
  35. De Lecea L., Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. doi: 10.3389/fphar.2014.00016.
  36. Adamantidis A.R., Zhang F., Aravanis A.M., et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4. doi: 10.1038/nature06310.
  37. Olsson M., Arlig J., Hedner J., et al. Sleep deprivation and cerebrospinal fluid biomarkers for Alzheimer’s disease. Sleep. 2018;41(5). doi: 10.1093/sleep/zsy025.
  38. Atkin T., Comai S., Gobbi G. Drugs for insomnia beyond benzodiazepines: pharmacology, clinical applications, and discovery. Pharmacol Rev. 2018;70(2):197–245. doi: 10.1124/pr.117.014381.
  39. Ho Y.C., Lee H.J., Tung L.W., et al. Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci. 2011;31(41):14600–10. doi: 10.1523/jneurosci.2671-11.2011.
  40. Razavi B.M., Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother. 2017;90:187–93. doi: 10.1016/j.biopha.2017.03.053.
  41. Toyama S., Shimoyama N., Shimoyama M. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain. Neuropeptid. 2017;61:95–100. doi: 10.1016/j.npep.2016.12.007.
  42. Yamamoto T., Nozaki-Taguchi N., Chiba T. Analgesic effect of intrathecally administered orexin-A in the rat formalin test in the rat hot plate test. Br J Pharmacol. 2002;137(2):170–6. doi: 10.1038/sj.bjp.0704851.
  43. Hartmann F.J., Bernard-Valnet R., Queriault C., et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med. 2016;213(12):2621–33. doi: 10.1084/jem.20160897.
  44. Акарачкова Е.С., Байдаулетова А.И., Беляев А.А. и др. Стресс: причины и последствия, лечение и профилактика. Клинические рекомендации. СПб., 2020. [Akarachkova E.S., Baidauletova A.I., Belyaev A.A., et al. Stress: causes and consequences, treatment and prevention. Clinical guidelines. St. Petersburg, 2020. (In Russ.)].
  45. Котова О.В., Беляев А.А., Акарачкова Е.С. и др. Синдром вегетативной дисфункции: диагностика и лечение. Терапия. 2023;9(71):168–75. [Kotova O.V., Belyaev A.A., Akarachkova E.S, et al. Vegetative dysfunction syndrome: Diagnosis and treatment. Therapy. 2023;9(71):168–75. (In Russ.)]. doi: 10.18565/therapy.2023.9.168-175.
  46. Chrousos G.P. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5(7):374–81. doi: 10.1038/nrendo.2009.106.
  47. Cook A.D., Christensen A.D., Tewari D., et al. Immune cytokines and their receptors in inflammatory pain. Trend Immunol. 2018;39(3):240–55. doi: 10.1016/j.it.2017.12.003.
  48. Woda A., Picard P., Dutheil F. Dysfunctional stress responses in chronic pain. Psychoneuroendocrinol. 2016;71:127–35. doi: 10.1016/j.psyneuen.2016.05.017.
  49. Minkel J., Moreta M., Muto J., et al. Sleep deprivation potentiates HPA axis stress reactivity in healthy adults. Health Psychol. 2014;33(11):1430–4. doi: 10.1037/a0034219.
  50. Simpson N.S., Diolombi M., Scott-Sutherland J., et al. Repeating patterns of sleep restriction and recovery: Do we get used to it? Brain Behavior Immun. 2016;58:142–51. doi: 10.1016/j.bbi.2016.06.001.
  51. Devine J.K., Bertisch S.M., Yang H., et al. Glucocorticoid and inflammatory reactivity to a repeated physiological stressor in insomnia disorder. Neurobiol Sleep Circad Rhythms. 2019;6:77–84. doi: 10.1016/j.nbscr.2018.06.001.
  52. Goodin B.R., Smith M.T., Quinn N.B., et al. Poor sleep quality and exaggerated salivary cortisol reactivity to the cold pressor task predict greater acute pain severity in a non-clinical sample. Biol Psychol. 2012;91(1):36–41. doi: 10.1016/j.biopsycho.2012.02.020.
  53. Rea M.S., Figueiru M.G. A working threshold for acute nocturnal melatonin suppression from “white” light sources used in architectural applications. J Carcinogenes Mutagenes. 2013;04(03):1000150. doi: 10.4172/2157-2518.1000150.
  54. Chang A.M., Aeschbach D., Duffy J.F., Czeisler C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceed National Acad Sci. 2015;112(4):1232–7. doi: 10.1073/pnas.1418490112.
  55. Hardeland R., Cardinali D.P., Srinivasan V., et al. Melatonin-A pleiotropic, orchestrating regulator molecule. Progress Neurobiol. 2011;93(3):350–84. doi: 10.1016/j.pneurobio.2010.12.004.
  56. Mauriz J.L., Collado P.S., Veneroso C., et al. A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res. 2013;54(1):1–14. doi: 10.1111/j.1600-079x.2012.01014.x.
  57. Chen W.W., Zhang X., Huang W.J. Pain control by melatonin: Physiological and pharmacological effects. Exp Ther Med. 2016;12(4):1963–8. doi: 10.3892/etm.2016.3565.
  58. Котова О.В., Медведев В.Э., Полуэктов М.Г. и др. Расстройства сна при постковидном синдроме – проблема психиатрии или неврологии? Журнал неврологии и психиатрии им. C.C. Корсакова. Спецвыпуски. 2022;122(5–2):23–8. [Kotova O.V., Medvedev V.E., Poluektov M.G., et al. Sleep disorders in post-COVID syndrome – a problem of psychiatry or neurology? S.S. Korsakov J Neurol Psych. 2022;122(5–2):23–8. (In Russ.)]. doi: 10.17116/jnevro202212205223.
  59. Auld F., Maschauer E.L., Morrison I., et al. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med Rev. 2017;34:10–22. doi: 10.1016/j.smrv.2016.06.005.
  60. Mozaffari S., Rahimi R., Abdollahi M. Implications of melatonin therapy in irritable bowel syndrome: a systematic review. Curr Pharmaceut Design. 2010;16(33):3646–55. doi: 10.2174/138161210794079254.
  61. Huang C.T., Chiang R.P.Y., Chen C.L., Tsai Y.J. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep. 2014;37(9):1513–23. doi: 10.5665/sleep.4002.
  62. Котова О.В., Акарачкова Е.С., Беляев А.А. и др. Эффективность и безопасность комбинированного препарата СонНорм Дуо у пациентов с инсомнией: результаты открытого рандомизированного сравнительного клинического исследования. Эффективная фармакотерапия. 2022;18(36):78–83. Kotova O.V., Akarachkova E.S., Belyaev A.A., Borodulina I.V., Pavlova S.V. Efficacy and Safety of the Combined Drug SonNorm Duo in Patients with Insomnia: Results of an Open Randomized Comparative Clinical Trial. Effektivnaya farmakoterapiya. 2022;18(36):78–83. doi: 10.33978/2307-3586-2022-18-36-78-83.
  63. Кадырова Л.Р., Акарачкова Е.С., Керимова К.С. и др. Мультидисциплинарный подход к пациенту с хронической болью. Русский медицинский журнал. 2018;7:28–32. [Kadyrova L.R., Akarachkova E.S., Kerimova K.S., et al. A multidisciplinary approach to a patient with chronic pain. Rus Med J. 2018;7:28–32. (In Russ.)].
  64. Полуэктов М.Г., Акарачкова Е.С., Довгань Е.В. и др. Ведение пациентов с инсомнией при полиморбидной патологии: консенсус экспертов. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023;123(5–2):49–57. [Poluektov M.G., Akarachkova E.S., Dovgan E.V., et al. Management of patients with insomnia and polymorbidity: expert consensus. S.S. Korsakov J Neurol Psychiatry. 2023;123(5–2):49–57. (In Russ.)]. doi: 10.17116/jnevro202312305249.
  65. Vitiello M.V., McCurry S.M., Shortreed S.M., et al. Short-term improvement in insomnia symptoms predicts long-term improvements in sleep, pain, and fatigue in older adults with comorbid osteoarthritis and insomnia. Pain. 2014;155(8):1547–54. doi: 10.1016/j.pain.2014.04.032.
  66. Tang N.K.Y., Goodchild C.E., Sanborn A.N., et al. Deciphering the temporal link between pain and sleep in a heterogeneous chronic pain patient sample: a multilevel daily process study. Sleep. 2012;35:675–87. doi: 10.5665/sleep.1830.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2025