Senotherapeutic biorevitalization
- Authors: Khabarov V.N.1, Znatdinov D.I.1, Kholupova L.S.2
-
Affiliations:
- Research Center for Hyaluronic Acid
- Central State Medical Academy of the Administrative Directorate of the President of the Russian Federation
- Issue: Vol 31, No 9 (2024)
- Pages: 96-105
- Section: Dermatology/allergology
- URL: https://journals.eco-vector.com/2073-4034/article/view/680041
- DOI: https://doi.org/10.18565/pharmateca.2024.9.96-105
- ID: 680041
Cite item
Abstract
Aging is a natural biological process that affects all levels of life organization. Understanding the mechanisms of aging is of great importance for developing effective strategies for the prevention and treatment of the phenomenon of premature aging in cosmetology, dermatology and aesthetic medicine. Cellular aging – senescence, is considered one of the central links in the aging process. Research in this area can lead to the development of new methods for locally slowing down the aging process, treating the phenomenon of premature aging and increasing the effectiveness of the procedures. One of the promising areas in the framework of injection cosmetology is biorevitalization – an invasive procedure aimed at restoring and optimizing the quality characteristics of the skin, in particular the intercellular matrix. This work is devoted to the description of a new direction of biorevitalization based on a multimarker approach within the framework of molecular cosmetology – senotherapeutic biorevitalization or senobirevitalization. The effect of this group of drugs is achieved by intradermal administration of a gel containing hyaluronic acid with additional senotherapeutic components. These components contribute to the partial or complete blockade of pathways associated with the expression of the senescence associated secretory phenotype (SASP) without cell death. The article also examines in detail the regulation and functional role of SASP, the mechanism of action of senotherapeutic drugs, their advantages and prospects for the development of this direction.
Keywords
Full Text

About the authors
V. N. Khabarov
Research Center for Hyaluronic Acid
Email: d.znatdinov@nicgk.com
ORCID iD: 0009-0008-8271-5507
Russian Federation, Moscow
D. I. Znatdinov
Research Center for Hyaluronic Acid
Author for correspondence.
Email: d.znatdinov@nicgk.com
ORCID iD: 0009-0001-3227-4415
Junior Researcher
Russian Federation, MoscowL. S. Kholupova
Central State Medical Academy of the Administrative Directorate of the President of the Russian Federation
Email: d.znatdinov@nicgk.com
ORCID iD: 0000-0002-2781-4587
Russian Federation, Moscow
References
- Kaur J., Farr J. Cellular senescence in age-related disorders. Transl Res. 2020;226:96–104.
- Kirkland J., Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288:518–36.
- Di Micco R., Krizhanovsky V., Baker D., d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95.
- Lopez-Otin, C., Blasco M.A., Partridge L., et al. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039.
- Schmauck-Medina T., Moliere A., Lautrup S., et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY). 2022;14(16):6829–39. doi: 10.18632/aging.204248.
- Голубев А.Г. Естественная история продолжительности жизни и старения. СПб., 2022. [Golubev A.G. Natural history of life expectancy and aging. St. Petersburg, 2022. (In Russ.)].
- Lee Y., Choi S., Roh W., et al. Cellular Senescence and Inflammaging in the Skin Microenvironment. Int J Mol Sci. 2021;22(8):3849.
- Blagosklonny M.V. Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget. 2021;12(18):1821–35.
- Pawge G., Khatik G. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem Pharmacol. 2021;190:114651.
- Cormenier J., Martin N., Desle J., et al. The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Mech Ageing Dev. 2018;170:82–91.
- Belser M., Walker D. Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases. Front Genet. 2021;12:714228.
- Lee J.Y., Davis I., Youth E., et al. Misexpression of genes lacking CpG islands drives degenerative changes during aging. Sci Adv. 2021;7(51):eabj9111.
- Warnon C., Bouhjar K., Ninane N., et al. HDAC2 and 7 down-regulation induces senescence in dermal fibroblasts. Aging (Albany NY) 2021;13:1–8.
- Yeh S., Lin J., Chen B. Multiple-Molecule Drug Design Based on Systems Biology Approaches and Deep Neural Network to Mitigate Human Skin Aging. Molecules. 2021;26(11):3178.
- Domaszewska-Szostek A., Puzianowska-Kuznicka M., Kurylowicz A. Flavonoids in Skin Senescence Prevention and Treatment. Int J Mol Sci. 2021;22(13):6814.
- Pereira B., Devine O., Vukmanovic-Stejic M., et al. Senescent Cells Evade Immune Clearance via HLA-E-Mediated NK and CD8+ T Cell Inhibition. Nat Commun. 2019;10:2387.
- Munoz D., Yannone S., Daemen A., et al. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight. 2019;5(14):e124716.
- Nguyen A., Soulika A. The Dynamics of the Skin’s Immune System. Int J Mol Sci. 2019;20(8):1811.
- Lu R., Wang E., Benayoun B. Functional genomics of inflamm-aging and immunosenescence. Brief Funct Genomics. 2022;21(1):43–55.
- Franceschi C., Salvioli S., Garagnani P., et al. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front Immunol. 2017;8:982. doi: 10.3389/fimmu.2017.00982.
- Wiley C., Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021;3(10): 1290–301.
- Хабаров В.Н. Коллаген в косметической дерматологии. М., 2018. [Khabarov V.N. Collagen in cosmetic dermatology. M., 2018. (In Russ.)].
- Kruglikov I., Zhang Z., Scherer P. Skin aging: Dermal adipocytes metabolically reprogram dermal fibroblasts. Bioessays. 2022;44(1):e2100207.
- Кругликов И. Дермальные адипоциты в дерматологии и эстетической медицине: новые терапевтические подходы. Эстетическая медицина. 2022;ХХ1(4):389–93.[Kruglikov I. Dermal adipocytes in dermatology and aesthetic medicine: new therapeutic approaches. Aesthetic medicine. 2022;XX1(4):389–93. (In Russ.)].
- Fang C., Huang L., Tsai H., Chang H. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin. Int J Mol Sci. 2016;17(7):1129.
- Narzt M., Pils V., Kremslehner C., et al. Epilipidomics of Senescent Dermal Fibroblasts Identify Lysophosphatidylcholines as Pleiotropic Senescence-Associated Secretory Phenotype (SASP) Factors. J Invest Dermatol. 2021;141(Suppl. 4):993–1006.e15.
- Lephart E., Naftalin F. Menopause and the Skin: Old Favorites and New Innovations in Cosmeceuticals for Estrogen-Deficient Skin. Dermatol Ther (Heidelb). 2021;11(1):53–69.
- An H., Kim Y., Chang S., et al. Choi I. High-spatial and colourimetric imaging of histone modifications in single senescent cells using plasmonic nanoprobes. Nat Commun. 2021;12(1):5899.
- Krupina K., Goginashvili A., Cleveland D. Causes and consequences of micronuclei. Curr Opin Cell Biol. 2021;70:91–9.
- Rocha A., Dalgarno A., Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief Funct Genomics. 2022;21(1):24–34.
- Freyter B., Abd Al-Razaq M., Isermann A., Dietz A. Nuclear Fragility in Radiation-Induced Senescence: Blebs and Tubes Visualized by 3D Electron Microscopy. Cells. 2022;11(2):273.
- Rübe C., Baumert C., Schuler N., et al. Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. NPJ Aging Mech Dis. 2021;7(1):7.
- Voong C., Goodrich J., Kugel J. Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules. 2021;11(10):1451.
- Zhang X., Liu X., Du Z., et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 2021;31(7):1121–35.
- De Cecco M., Ito T., Petrashen A., et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019; 566:73–8.
- Зорина А., Зорин В., Копнин П. Молекулярно-клеточные механизмы старения кожи. (Обзор). Эстетическая медицина. 2022;ХХ1(1):47–56. [Zorina A., Zorin V., Kopnin P. Molecular and cellular mechanisms of skin aging. (Review). Aesthetic Medicine. 2022;XX1(1):47–56. (In Russ.)].
- Tang H., Geng A., Zhang T., et al. Single senescent cell sequencing reveals heterogeneity in senescent cells induced by telomere erosion. Protein Cell. 2019;10(5):370–75.
- Malaquin N., Tu V., Rodier F. Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP). Methods Mol Biol. 2019;1896:45–55.
- Covarrubias A. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat Metab. 2020;2:1265–83.
- Han X., Chen H., Gong H., et al. Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence. J Biol Chem. 2020;295:4451–63.
- Xu P., Wang M., Song W., et al. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol Neurodegener. 2022;17(1):5.
- Cayo A., Segovia R., Venturini W., et al. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci. 2021;22(15):8149.
- Charruyer A., Weisenberger T., Li H., et al. A. Decreased p53 is associated with a decline in asymmetric stem cell self-renewal in aged human epidermis. Aging Cell. 2021;20(2):e13310.
- Choi Y., Moon K., Chung K., et al. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget. 2016;7(33):52685–94.
- Waldera Lupa D., Kalfalah F., Safferling K., et al. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin. J Invest Dermatol. 2015;135:1954–68.
- Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20(4):e13338.
- Wiley C., Sharma R., Davis S., et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 2021;33(6):1124–36.e5.
- Wang Y., Liu L., Song Y., et al. Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein Cell. 2022 Jan 12.
- Kandhaya-Pillai R., Miro-Mur F., Alijotas-Reig J., et al. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging (Albany NY). 2017;9(11):2411–35.
- Panchin A.Y., Ogmen A., Blagodatski A.S., et al. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY). 2024;16:12073–100.
- Grigorieva O., Arbatskiy M., Novoseletskaya E., et al. Platelet-Derived Growth Factor Induces SASP-Associated Gene Expression in Human Multipotent Mesenchymal Stromal Cells but Does Not Promote Cell Senescence. Biomedicines. 2021;9:1290.
- Santos-Otte P., Leysen H., van Gastel J., et al. G Protein-Coupled Receptor Systems and Their Role in Cellular Senescence. Comput Struct Biotechnol J. 2019;17:1265–77.
- Tian M., Huang Y., Song Y., et al. MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. Adv Sci (Weinh). 2020;7(22):2001950.
- Mogilenko D., Shchukina I., Artyomov M. Immune ageing at single-cell resolution. Nat Rev Immunol. 2021;23:1–15.
- Моргунова Г.В., Хохлов А.Н. Препараты с сенолитической активностью: перспективы и возможные ограничения. Вестник Московского университета. Серия 16. Биология. 2023;78(4):278–84. [Morgunova G.V., Khokhlov A.N. Drugs with senolytic activity: prospects and possible limitations. Vestnik Moskovskogo universiteta. Seria 16, Biologia. 2023;78(4):278–84. (In Russ.)]. doi: 10.55959/MSU0137-0952-16-78-4-3.
- Zhang L., Pitcher L., Prahalad V., et al. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. 2022 Jan 11.
- Fang J., Yang J., Wu X., et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell. 2018;17:e12765.
- Lim J., Kim H., Park S., et al. Identification of a novel senomorphic agent, avenanthramide C, via the suppression of the senescence-associated secretory phenotype. Mech Ageing Dev. 2020;192:111355.
- Индилова Н.И., Юрченко А.И. Биоре-витализация: основные механизмы. Дер-матология. Приложение к журналу Consilium Medicum. 2008;2:56–8. [Indilova N.I., Yurchen-ko A.I. Biorevitalization: basic mechanisms. Dermatology. Consilium Medicum (Suppl). 2008;2:56–8. (In Russ.)].
- Хабаров В.Н., Пальцев М.А., Родичкина В.Р., Кветной И.М. Молекулярная косметология (сигнальные механизмы старения кожи, таргетная профилактика и терапия). СПб., 2021. [Khabarov V.N., Pal’tsev M.A., Rodichkina V.R., Kvetnoy I.M. Molecular cosmetology (signaling mechanisms of skin aging, targeted prevention and therapy). St. Petersburg, 2021. (In Russ.)].
- Lau, Lester. (). Lau, L.F. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. 2011;68(19):3149–63. doi: 10.1007/s00018-011-0778-3.
- Quan T., et al. Dermal fibroblast CCN1 expression in mice recapitulates human skin dermal aging. J Investig Dermatol. 2021;141(4):1007–16. doi: 10.1016/j.jid.2020.07.019.
- Rossi M., Abdelmohsen K. The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets. Cells. 2021;10(7):1740.
- Хабаров В.Н. Коллаген, эластин, гиалуроновая кислота в молекулярной косметологии. М., 2023. [Khabarov V.N. Collagen, elastin, hyaluronic acid in molecular cosmetology. M., 2023. (In Russ.)].
- Хабаров В.Н. Новый взгляд на биоревитализацию препаратами гиалуроновой кислоты с эссенциальными микроэлементами. Эстетическая медицина. 2024;12(3). [Khabarov V.N. A new view at biorevitalization based on hyaluronic acid with essential microelements. Aesthetic medicine. 2024;12(3). (In Russ.)].
- Хабаров В.Н., Жукова И.К., Кветной И.М. Инфламейджинг – современная концепция воспалительного старения в преломлении молекулярной косметологии. Эстетическая медицина. 2023;12(4):423–32. [Khabarov V.N., Zhukova I.K., Kvetnoy I.M. Inflaming is a modern concept of inflammatory aging in the refraction of molecular cosmetology. Aesthetic medicine. 2023;12(4):423–32. (In Russ.)].
- Камелина Л.И., Забненкова О.В. Нативная гиалуроновая кислота: метод биоревитализации. Экспериментальная и клиническая дерматокосметология. 2010;4:35–40. [Kamelina L.I., Zabnenkova O.V. Native hyaluronic acid: a biorevitalization method. Experimental and clinical dermatocosmetology. 2010;4:35–40. (In Russ.)].
- Хабаров В.Н. Гиалуроновая кислота в инъекционной косметологии. М., 2017. [Khabarov V.N. Hyaluronic acid in injection cosmetology. M., 2017. (In Russ.)].
- Кудревич Ю.В., Сычугов Г.В., Зиганшин О.Р., Заяц Т.А. Изменения структурных показателей кожи при воздействии биоревитализации. Текст: электронный. Уральский медицинский журнал. 2016;136(3):113–5. [Kudrevich Yu.V., Sychugov G.V., Ziganshin O.R., Zayats T.A. Changes in skin structural parameters under the influence of biorevitalization. Text: electronic. Ural Medical Journal. 2016;136(3):113–5. (In Russ.)].
- Lipova E., Suhovei Y., Griazeva N. Biorevitalizant with multitargeted action. Rus J Skin Venereal Dis. 2016;19:311–7. doi: 10.18821/1560-9588-2016-19-5-311-317.
- Arora G., Arora S., Sadoughifar R., Batra N. Biorevitalization of the skin with skin boosters: Concepts, variables, and limitations. J Cosmet Dermatol. 2021;20(8):2458–62. doi: 10.1111/jocd.13871.
- Михайлова Н.П., Нетишинская Н.Е. Био-ревитализация. Биорепарация. Альтернатива или дополнение? Инъекционные методы в косметологии. 2015;3:116–20. [Mikhailova N.P., Netishinskaya N.E. Biorevitalization. Bioreparation. Alternative or supplement? Injection methods in cosmetology. 2015;3:116–20. (In Russ.)].
- Кожина К.В., Григорьева А.А., Свечникова Е.В. Инъекционная биорепарация-перспективное направление терапии инволюционных изменений кожи. Фарматека. 2021;28(8):147–50. [Kozhina K.V., Grigorieva A.A., Svechnikova E.V. Injection bioreparation is a promising direction in the treatment of involutional skin changes. Farmateka. 2021;28(8):147–50. (In Russ.)]. doi: 10.18565/pharmateca.2021.8.147-150.
- Кириченко Т.В., Маркина Ю.В., Маркин А.М. и др. Сенесцентные клетки: терапевтическая мишень в борьбе со старением. Восстановительные биотехнологии, профилактическая, цифровая и предиктивная медицина. 2024;1(3):53–63. [Kirichenko T.V., Markina Yu.V., Markin A.M., et al. Senescent cells: a therapeutic target in the fight against aging. Restorative biotechnologies, preventive, digital and predictive medicine. 2024;1(3):53–63. (In Russ.)].
- Сорокина А.Г., Орлова Я.А., Григорьева О.А. и др. Изучение взаимосвязей между биомаркерами накопления сенесцентных клеток на системном, тканевом и клеточном уровнях при старении. Гены и клетки. 2022;17(3):218–8. [Sorokina A.G., Orlova Ya.A., Grigorieva O.A., et al. Study of the relationships between biomarkers of senescent cell accumulation at the systemic, tissue and cellular levels during aging. Genes and cells. 2022;17(3):218–8. (In Russ.)].
- Briganti S., Flori E., Mastrofrancesco A., et al. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARγ. Exp Dermatol. 2013;22(1):41–7. doi: 10.1111/exd.12066.
- Хабаров В.Н., Кветной И.М., Желендинова А.И. Anti-age терапия с воздействием на сиртуиновые белки. Облик. 2024;3(57):42–5. [Khabarov V.N., Kvetnoy I.M., Zhelendinova A.I. Anti-age therapy with the effect on sirtuin proteins. Oblik. 2024;3(57):42–5. (In Russ.)].
- Желендинова А.И. Взгляд с позиции молекулярной косметологии на коррекцию возрастных изменений кожи. Метаморфозы. 2024;46:16–9. [Zhelendinova A.I. A view from the position of molecular cosmetology on the correction of age-related skin changes. Metamorphoses. 2024;46:16–9. (In Russ.)].
- Ханалиева И., Орлова Е., Константинова М. Эстетическая реабилитация кожи с помощью дермальных матриксантов в сочетанных протоколах. Эстетическая медицина. 2024;3:295–9. [Khanalieva I., Orlova E., Konstantinova M. Aesthetic rehabilitation of the skin using dermal matrices in combined protocols. Aesthetic Medicine. 2024;3:295–9. (In Russ.)].
Supplementary files
