Heterogeneity of the pathophysiological mechanisms of the development of spasticity syndrome in various central nervous system disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Spasticity is a clinical condition characterized by a velocity-dependent increase in muscle tone or tonic tendon reflexes in combination with other symptoms of damage to the upper motor neuron (UMN). Spasticity is considered a positive symptom of UMN, resulting from a loss of the inhibitory descending effect of the central nervous system (CNS) on the underlying structures and the development of hypersensitivity of reflex arcs at the spinal cord level. Various diseases can lead to the development of spasticity: stroke, cerebral palsy (CP), traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), neurodegenerative diseases, etc. The article discusses in detail the pathophysiology of spasticity in various diseases, as well as the heterogeneity of the mechanisms of the formation of spasticity syndrome. The results of modern studies on the efficacy of botulinum toxin type A (BTA) in the treatment of spasticity are presented. BTA is effective as an independent method for treating focal spasticity of various etiologies: stroke, CP, SCI, TBI, and MS, and the adjuvant method in combination with other approaches for generalized spasticity. Additional studies are required for the further evaluation of the BTA efficacy in treating spasticity in these diseases.

Full Text

Restricted Access

About the authors

Svetlana E. Khatkova

National Medical Research Center; Burnazyan Federal Medical Biophysical Center

Email: Hse15@mail.ru
Dr. Sci. (Med.), Professor Moscow, Russia

E. V Kostenko

Pirogov Russian National Research Medical University

Moscow, Russia

M. A Akulov

N.N. Burdenko National Scientific and Practical Center for Neurosurgery

Moscow, Russia

V. P Diaghileva

National Medical Research Center; Burnazyan Federal Medical Biophysical Center

Moscow, Russia

E. A Nikolaev

National Medical Research Center; Burnazyan Federal Medical Biophysical Center

Moscow, Russia

A. A Balbert

Sverdlovsk Regional Clinical Psychoneurological Hospital for War Veterans

Yekaterinburg, Russia

A. S Orlova

Sechenov First Moscow State Medical University (Sechenov University)

Moscow, Russia

References

  1. Ferrer P.M., Inigo H.V, Juste D.J., et al. Systematic review of the treatment of spasticity in acquired adult brain damage. Rehabilit (Mad.). 2020;54(1):51-62. Doi: 10.1016/. rh. 2019.06.006.
  2. Martin A, Abogunrin S., Kurth H, Dinet J. Epidemiological, humanistic, and economic burden of illness of lower limb spasticity in adults: a systematic review. Neuropsych Dis Treat. 2014;10:111-22. doi: 10.2147/NDT.S53913.
  3. Munoz-Lasa S., Lopez de Silanes C, At'n-Arratibel M.A., et al. Effects of hippotherapy in multiple sclerosis: pilot study on quality of life, spasticity, gait, pelvic floor, depression and fatigue. Med Clin (Barc). 2019;152(2):55-8. Doi: 10.1016/j. medcli.2018.02.015.
  4. Forsmark A, Rosengren L, Ertzgaard P Inequalities in pharmacologic treatment of spasticity in Sweden - health economic consequences of closing the treatment gap. Health Econ Rev. 2020;10(1):4.
  5. Meijer R., Wolswijk A, Eijsden H.V. Prevalence, impact and treatment of spasticity in nursing home patients with central nervous system disorders: a cross-sectional study. Disabil Rehabil. 2017;39(4):363-71. doi: 10.3109/09638288.2016.1146351.
  6. Tranchida G.V, Van Heest A. Preferred options and evidence for upper limb surgery for spasticity in cerebral palsy, stroke, and brain injury. J Hand Surg Eur. 2020;45(1):34-42. doi: 10.1177/1753193419878973.
  7. Wood D.E., Burridge J.H., van Wijck F.M., et al. Biomechanical approaches applied to the lower and upper limb for the measurement of spasticity: a systematic review of the literature. Disabil Rehabil. 2005;27(1-2):19-32.
  8. Pandyan A.D., Van Wijck F.M., Stark S., et al. The construct validity of a spasticity measurement device for clinical practice: an alternative to the Ashworth scales. Disabil Rehabil. 2006;28(9):579-85.
  9. Sunnerhagen K.S., Opheim A., Alt Murphy M. Onset, time course and prediction of spasticity after stroke or traumatic brain injury. Ann Phys Rehabil Med. 2019;62(6):431-34. Doi: 10.1016/j. rehab.2018.04.004.
  10. Li S., Francisco G.E. New insights into the pathophysiology of post-stroke spasticity. Front Hum Neurosci. 2015;9:192. Doi: 10.3389/ fnhum.2015.00192.
  11. Wissel J., Manack A., Brainin M. Toward an epidemiology of poststroke spasticity. Neurol. 2013;80(3):13-9. Doi: 10.1212/ WNL.0b013e3182762448.
  12. Burke D., Wissel J., Donnan G.A. Pathophysiology of spasticity in stroke. Neurol. 2013;80 (3 Suppl. 2):S20-26. Doi: 10.1212/ WNL.0b013e31827624a7.
  13. Ward A.B. A literature review of the pathophysiology and onset of post-stroke spasticity. Eur J Neurol. 2012;19(1):21-7. doi: 10.1111/j.1468- 1331.2011.03448.x.
  14. Asano S., Chantler P.D., Barr T.L. Gene expression profiling in stroke: relevance of blood-brain interaction. Curr Opin Pharmacol. 2016;26:80-6. doi: 10.1016/j.coph.2015.10.004.
  15. Дульнев В.В., Зуева Г.А., Кулова О.Ю. и др. Особенности эпидемиологии детского церебрального паралича у детей Тверской области. Бюллетень медицинских интернет-конференций. 2017;7(7):1350-52. [Dul'nev W, Zueva G.A., Kulova O.Yu. et al. Features of the epidemiology of cerebral palsy in children of the Tver Region. Byulleten' meditsinskikh internet-konferentsii. 2017;7(7):1350-2. (In Russ.)].
  16. Haberfehlner H., Goudriaan M., Bonouvrie L.A., et al. instrumented assessment of motor function in dyskinetic cerebral palsy: a systematic review. J Neuroeng Rehabil. 2020;17(1):39. Doi: 10.1186/ s12984-020-00658-6.
  17. Mathewson M.A., Lieber R.L. Pathophysiology of muscle contractures in cerebral palsy Phys Med Rehabil Clin N Am. 2015;26(1):57-67. doi: 10.1016/j.pmr.2014.09.005.
  18. Flanigan M., Gaebler-Spira D., Kocherginsky M., et al. Spasticity and pain in adults with cerebral palsy Dev Med Child Neurol. 2020;62(3):379-85. doi: 10.1111/dmcn.14368.
  19. Palisano R., Rosenbaum P, Walter S., et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4): 214-23.
  20. Баранов А.А. Федеральные клинические рекомендации по оказанию медицинской помощи детям с детским церебральным параличом. M., 2015.
  21. Laxe S. Which interventions are useful for managing muscle spasticity in individuals who sustained traumatic brain injury? - A Cochrane Review summary with commentary. NeuroRehabilit. 2019;44(1):157-59. doi: 10.3233/NRE-189003.
  22. Sulhan S., Lyon K.A., Shapiro L.A., Huang J.H. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J Neurosci Res. 2020;98(1):19-28. doi: 10.1002/jnr.24331.
  23. Williams O.H., Tallantyre E.C., Robertson N.P Traumatic brain injury: pathophysiology, clinical outcome and treatment. J Neurol. 2015;262(5):1394-96. doi: 10.1007/s00415-015-7741-4.
  24. Pattuwage L., Olver J., Martin C., et al. Management of Spasticity in Moderate and Severe Traumatic Brain Injury: Evaluation of Clinical Practice Guidelines. J Head Trauma Rehabil. 2017;32(2):1-12. doi: 10.1097/HTR.0000000000000234.
  25. Baagoe S.K., Kofoed-Hansen M., Poulsen I., Riberholt C.G. Development of muscle contractures and spasticity during subacute rehabilitation after severe acquired brain injury: a prospective cohort study. Brain Inj. 2019;33(11):1460-66. doi: 10.1080/02699052.2019.1646433.
  26. Sangari S., Lundell H., Kirshblum S., Perez M.A. Residual descending motor pathways influence spasticity after spinal cord injury Ann Neurol. 2019;86(1):28-41. doi: 10.1002/ana.25505.
  27. Luo D., Wu G., Ji Y, et al. The comparative study of clinical efficacy and safety of baclofen vs tolperisone in spasticity caused by spinal cord injury Saudi Pharm J. 2017;25(4):655-59. doi: 10.1016/j.jsps.2017.04.041.
  28. Cha S., Yun J.H., Myong Y, Shin H.I. Spasticity and preservation of skeletal muscle mass in people with spinal cord injury Spinal Cord. 2019;57(4):317-doi: 10.1038/s41393-018-0228-2.
  29. Finnerup N.B. Neuropathic pain and spasticity: intricate consequences of spinal cord injury Spinal Cord. 2017;55(12):1046-50. Doi: 10.1038/ sc.2017.70.
  30. Norbye A.D., Midgard R., Thrane G. Spasticity, gait, and balance in patients with multiple sclerosis: A cross-sectional study Physiother Res Int. 2020;25(1):1799. doi: 10.1002/pri.1799.
  31. Gracies J.M. Pathophysiology of spastic paresis. II: emergence of muscle over activity Muscle Nerve. 2005;31(5):552-71.
  32. Crone C.,Johnsen L.L.,Biering-Srensen F.,Nielsen J.B. Appearance of reciprocal facilitation of ankle extensors fromankle flexors in patients with stroke or spinal cord injury. Brain. 2003;126(pt. 2): 495-507.
  33. Izquierdo G. Multiple sclerosis symptoms and spasticity management: new data. Neurodegener. Dis Manag. 2017;7(Suppl. 6):7-11. doi: 10.2217/nmt-2017-0034.
  34. Kheder A., Nair K.PS. Spasticity: pathophysiology, evaluation and management. Pract Neurol. 2012;12:289-98.
  35. Trompetto C., Curra A., Puce L., et al. Ghost spasticity in multiple sclerosis. J Electromyogr Kinesiol. 2020;51:102408. Doi: 10.1016/j. jelekin.2020.102408.
  36. Schell W.E., Mar V.S., Da Silva C.P Correlation of falls in patients with Amyotrophic Lateral Sclerosis with objective measures of balance, strength, and spasticity. NeuroRehabilit. 2019;44(1):85-93. doi: 10.3233/NRE-182531.
  37. Kiernan M.C., Vucic S., Cheah B.C., et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942-55. Doi: 10.1016/ S0140-6736(10)61156-7.
  38. Dupuis L., Loeffler J.P Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Curr Opin Pharmacol. 2009;9(3):341-46. Doi: 10.1016/j. coph.2009.03.007
  39. Ditunno J.F., Little J.W., Tessler A., Burns A.S. Spinal shock revisited: a four-phase model. Spinal Cord. 2004;42:383-95.
  40. Mukherjee A., Chakravarty A. Spasticity mechanisms - for the clinician. Front Neurol. 2010;1:149.
  41. Malhotra S., Pandyan A.D., Rosewilliam S., et al. Spasticity and contractures at the wrist after stroke: Time course of development and their association with functional recovery of the upper limb. Clin Rehabil. 2011;25(2):184-91. doi: 10.1177/0269215510381620.
  42. Picelli A., Tamburin S., Gajofatto F, et al. Association between severe upper limb spasticity and brain lesion location in stroke patients. Biomed Res Int. 2014;2014:162754. doi: 10.1155/2014/162754.
  43. Dentel C., Palamiuc L., Henriques A., et al. Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity Brain. 2013;136(Pt. 2):483-93. Doi: 10.1093/ brain/aws274.
  44. Achache V, Roche N., Lamy J., et al. Transmission within several spinal pathways in adults with cerebral palsy. Brain. 2010;133(Pt. 5):1470-83. doi: 10.1093/brain/awq053.
  45. Kheder A., Nair K.P Spasticity: pathophysiology, evaluation and management. Pract Neurol. 2012;12(5):289-98. Doi: 10.1136/ practneurol-2011-000155.
  46. Райхель Г.Терапевтическое руководство спастичность-дистония. 1-е изд. Бремен: УНИМЕД, 2013. C. 12-3. [Raikhe F G. Therapeutic guide spasticity dystonia. 1st ed. Bremen: UNIMED, Bremen, 2013. P 12-3. (In Russ.)].
  47. Hiersemenzel L.P, Curt A., Dietz V. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurol. 2000;54(8):1574-82.
  48. Esquenazi A., Albanese A., Chancellor M.B., et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of adult spasticity in the upper motor neuron syndrome. Toxicon. 2013;67:115-28.
  49. Burbaud P, Wiart L., Dubos J.L., et al. A randomised, double blind, placebo controlled trial of botulinum toxin in the treatment of spastic foot in hemiparetic patients. J Neurol. Neurosurg Psychiatry. 1996;61(3):265-69.
  50. Reiter F., Danni M., Lagalla G., et al. Low-dose botulinum toxin with ankle taping for the treatment. of spastic equinovarus foot after stroke. Arch Phys Med Rehabil. 1998;79(5):532-35.
  51. Farina S., Migliorini C., Gandolfi M., et al. Combined effects of botulinum toxin and casting treatments on lower limb spasticity after stroke. Funct Neurol. 2008;23(2):87-91.
  52. Yan X., Lan J., Liu Y., Miao J. Efficacy and Safety of Botulinum Toxin Type A in Spasticity Caused by Spinal Cord Injury: A Randomized, Controlled Trial Med Sci Monit. 2018;24:8160-71. doi: 10.12659/MSM.911296.
  53. Gracies J.M., O'Dell M., Vecchio M., et al.; Effects of repeated abobotulinumtoxinA injections in upper limb spasticity. Muscle Nerve 2018;57: 245-54. doi: 10.1002/mus.25721.
  54. Gracies J.M., Esquenazi A., Brashear A., et al.; International AbobotulinumtoxinA Adult Lower Limb Spasticity Study Group. Efficacy and safety of abobotulinumtoxinA in spastic lower limb: Randomized trial and extension. Neurol. 2017;89(22):2245-53. Doi: 10.1212/ WNL.0000000000004687.
  55. McAllister P.J., Khatkova S.E., Faux S.G., et al. Effects on walking of simultaneous upper/lower limb abobotulinumtoxina injections in patients with stroke or brain injury with spastic hemiparesis. J Rehabil Med. 2019;51(10):813-16. doi: 10.2340/16501977-2604.
  56. Laxe S. Which interventions are useful for managing muscle spasticity in individuals who sustained traumatic brain injury? - A Cochrane Review summary with commentary. NeuroRehabilit. 2019;44(1):157-59. doi: 10.3233/NRE-189003.
  57. Graham H.K. Botulinum toxin A in cerebral palsy: functional outcomes. J Pediatr. 2000;137(3):300e-303.
  58. Koman L.A., Smith B.P, Williams R., et al. Upper extremity spasticity in children with cerebral palsy: a randomized, double-blind, placebo-controlled study of the short-term outcomes of treatment with botulinum A toxin. J Hand Surg Am. 2013;38(3):435-61.
  59. Olesch C.A., Greaves S., Imms C., et al. Repeat botulinum toxin-A injections in the upper limb of children with hemiplegia: a randomized controlled trial. Dev Med Child Neurol. 2010;52(1):79-86.
  60. Blumetti F.C., Belloti J.C., Tamaoki M.J., Pinto J.A. Botulinum toxin type A in the treatment of lower limb spasticity in children with cerebral palsy. Cochrane Database Syst Rev. 2019;10:CD001408. doi: 10.1002/14651858.CD001408.pub2.
  61. Lui J., Sarai M., Mills P.B. Chemodenervation for treatment of limb spasticity following spinal cord injury: a systematic review. Spinal Cord. 2015;53(4):252-64. Doi: 10.1038/ sc.2014.241.
  62. Yan X., Lan J., Liu Y, Miao J. Efficacy and Safety of Botulinum Toxin Type A in Spasticity Caused by Spinal Cord Injury: A Randomized, Controlled Trial. Med Sci Monit. 2018;24:8160-71. doi: 10.12659/MSM.911296.
  63. Palazon-Garcfa R., Alcobendas-Maestro M., Esclarin-de Ruz A., Benavente-Valdepenas A.M. Treatment of spasticity in spinal cord injury with botulinum toxin. J Spinal Cord Med. 2019;42(3):281-87. doi: 10.1080/10790268.2018.1479053.
  64. Grazko M.A., Polo K.B., Jabbari B. Botulinum toxin A for spasticity, muscle spasms, and rigidity. Neurol. 1995;45:712-17.
  65. Hyman N., Barnes M., Bhakta B., et al. Botulinum toxin (Dysport) treatment of hip adductor spasticity in multiple sclerosis: a prospective, randomised, double blind, placebo controlled, dose ranging study. J Neurol Neurosurg Psych. 2000; 68:707-12.
  66. Giovannelli M., Borriello G., Castri P, et al. Early physiotherapy after injection of botulinum toxin increases the beneficial effects on spasticity in patients with multiple sclerosis. Clin Rehabil. 2007;21(4):331-37.
  67. Paoloni M., Giovannelli M., Mangone M., et al. Does giving segmental muscle vibration alter the response to botulinum toxin injections in the treatment of spasticity in people with multiple sclerosis? A single-blind randomized controlled trial. Clin Rehabil. 2013;27(9):803-12. doi: 10.1177/0269215513480956.
  68. Latino P., Castelli L., Prosperini L., et al. Determinants of botulinum toxin discontinuation in multiple sclerosis: a retrospective study. Neurol Sci. 2017;38(10):1841-48. doi: 10.1007/s10072-017-3078-3.
  69. Marvulli R., Megna M., Citraro A., et al. Botulinum Toxin Type A and Physiotherapy in Spasticity of the Lower Limbs Due to Amyotrophic Lateral Sclerosis. Toxins (Basel). 2019;11(7). Doi: 10.3390/ toxins11070381.
  70. Инструкция FDA. URL: https://www. accessdata.fda.gov/drugsatfda_docs/ label/2019/125274s115lbl.pdf
  71. Инструкция по медицинскому применению препарата Диспорт® 500/300 ЕД. [Instructions for medical use of the drug Dysport® 500/300 UNITS. (In Russ.). URL: https://grls.rosminzdrav.ru

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies