The role of the disturbances in the intestinal barrier structure in relation to cardiovascular diseases pathogenesis and rebamipid potential in their correction


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cardiovascular diseases remain the leading cause of death worldwide, and today there is growing evidence of the important role of intestinal barrier disorders and microbiota imbalances in the development and progression of cardiovascular pathology. In this matter, changes in the structure of tight junctions between enterocytes of the intestinal mucous membrane have the leading importance, because normally they provide its barrier function, preventing the penetration into the systemic circulation both pathogens antigenic determinants and toxic products and biologically active substances. Impaired tight junctions and increased gastrointestinal mucous membrane permeability can be mediated by various mediators such as zonulin, an intestinal fatty acid-binding protein, as well as individual representatives of short-chain fatty acids. Increased intestinal permeability as well as its dysbiosis play a crucial role in the atherosclerosis progression, contributing to an increase in proinflammatory cytokines, chemoattractant molecules, and enhanced platelet reactivity. An important role in these processes is also played by trimethylamine oxide (TMAO), formed from the precursor synthesized by the intestinal microbiota. There is evidence that an elevated TMAO increases the risk of major adverse cardiovascular events, including death, myocardial infarction, and stroke. TMAO contribute to the atherosclerosis progression through various mechanisms - its inhibits the cholesterol reverse transport, which leads to its excretion impairment from macrophages and creates conditions for their transformation into foam cells and reduces the antiatherogenic effects of high density lipoproteins. The intestinal barrier and altered microbiome also contribute to the blood pressure dysregulation and predispose to arterial hypertension. The oxidized lipoproteins, which enter the bloodstream through the leaky intestinal mucosa, is also play important role in blood pressure increasing. A unique drug that can normalize the intestinal barrier function due to tight junctions’ repair is rebamipid. Distinctive features of this drug are its effectiveness throughout the whole gastrointestinal tract, as well as a wide range of pleiotropic effects, due to which rebamipid provides comprehensive mucous membrane protection at all three levels of its structural organization: at the preepithelial level, stimulating the mucins formation; at the epithelial level, restoring tight junctions and accelerating the cells regeneration; and subepithelial level, improving microcirculation in deep mucosa. Rebamipid has been used in clinical practice for a long time, due to this fact it has a wide body of evidence of high efficiency and safety, confirmed not only in experimental studies, but also in clinical trials. Additional, extremely important for cardiological patients, effects of rebamipide include directly anti-atherosclerotic and anti-inflammatory effects in the vascular bed, a beneficial effect on endothelial function and the activity in relation to the intestinal microbiome regulation. It was shown that rebamipid reduces the severity of intestinal mucosa damage induced by non-steroidal anti-inflammatory drugs, increases the lactobacilli level in the microbiome and reduces pathogenic bacteroids and clostridia. From the safety point of view, it is extremely important that even the triple rebamipide dose, studied in cardiologic patients, did not lead to the adverse drug reactions development. Such multifactorial pleiotropic rebamipide effects make it possible to consider it as a promising drug not only in the gastroenterologists’ practice, but also in the management of comorbid patients with cardiovascular diseases, including ischemic heart disease and arterial hypertension.

Full Text

Restricted Access

About the authors

O. D Ostroumova

Russian Medical Academy of Continuous Professional Education; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ostroumova.olga@mail.ru

A. I Kochetkov

Russian Medical Academy of Continuous Professional Education

References

  1. Бойцов С.А., Погосова Н.В., Бубнова М.Г. и др. Кардиоваскулярная профилактика 2017. Российские национальные рекомендации. Российский кардиологический журнал. 2018;(6):7-122. [Boytsov S.A., Pogosova N.V, Bubnova M.G., et al. Cardiovascular prevention 2017. National guidelines. Rossiiskii kardiologicheskii zhurnai=Russian Journal of Cardiology. 2018;(6):7-122. (In Russ.)]. doi: 10.15829/1560-4071-2018-6-7-122.
  2. Novakovic M, Rout A., Kingsley T., et al. Role of gut microbiota in cardiovascular diseases. World J Cardiol. 2020;12(4):110-22. doi: 10.4330/wjc. v12.i4.110.
  3. Williams B, Mancia G., Spiering W., et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021-104. Doi: 10.1093/ eurheartj/ehy339.
  4. Zhou D, Xi B., Zhao M., et al. Uncontrolled hypertension increases risk of all-cause and cardiovascular disease mortality in US adults: the NHANES III Linked Mortality Study. Sci Rep. 2018;8(1):9418. doi: 10.1038/s41598-018-27377-2.
  5. Herrington W., Lacey B., Sherliker P, et al. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016;118(4):535-46. doi: 10.1161/CIRCRESAHA.115.307611.
  6. Barquera S., Pedroza-Tobias A., Medina C., et al. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res. 2015;46(5):328-38. Doi: 10.1016/j. arcmed.2015.06.006.
  7. Versari D., Daghini E., Virdis A., et al. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 2009;32 (Suppl 2):S314-21. doi: 10.2337/dc09-S330.
  8. Zhang L., Wang F, Wang J., et al. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J Cell Mol Med. 2020;24(9):5205-12. doi: 10.1111/jcmm.15173.
  9. Ufnal M., Pham K. Thegut-bloodbarrierpermeability - a new marker in cardiovascular and metabolic diseases? Med Hypotheses. 2017;98:35-7. doi: 10.1016/j.mehy.2016.11.012.
  10. Forkosh E., Ilan Y The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart. 2019;6(1):e000993. doi: 10.1136/openhrt-2018-000993.
  11. Battson M.L., Lee D.M., Li Puma L.C., et al. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. Am J Physiol Heart Circ Physiol. 2019;317(6):H1210-H1220. doi: 10.1152/ajpheart.00346.2019.
  12. Kim S., Goel R., Kumar A., et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132(6):701-18. doi: 10.1042/CS20180087.
  13. Jaworska K., Huc T., Samborowska E., et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One. 2017;12(12):e0189310. doi: 10.1371/journal.pone.0189310.
  14. Tanaka M., Itoh H. Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Curr Hypertens Rep. 2019;21(8):63. Doi: 10.1007/ s11906-019-0964-5.
  15. Ma J., Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol. 2018;9:1082. doi: 10.3389/fphar.2018.01082.
  16. Pluznick J.L., Protzko R.J., Gevorgyan H., et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110(11):4410-15. Doi: 10.1073/ pnas.1215927110.
  17. Золотова Н.А., Архиева Х.М., Зайратьянц О.В. Эпителиальный барьер толстой кишки в норме и при язвенном колите. Экспериментальная и клиническая гастроэнтерология. 2019;162(2):4. doi: 10.31146/1682-8658-ecg-162-2-4-13.
  18. Lee B., Moon K.M., Kim C.Y. Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J Immunol Res. 2018;2018:2645465. doi: 10.1155/2018/2645465.
  19. Slifer Z.M., Blikslager A.T. The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. Int J Mol Sci 2020;21(3):972. doi: 10.3390/ijms21030972.
  20. Brun P, Castagliuolo I., Di Leo V, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G518-G525. Doi: 10.1152/ ajpgi.00024.2006.
  21. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151-75. Doi: 10.1152/ physrev.00003.2008.
  22. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258(1):25-33. doi: 10.1111/j.1749-6632.2012.06538.x.
  23. Li C., Gao M, Zhang W., et al. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci Rep. 2016;6:29142. doi: 10.1038/srep29142.
  24. Armingohar Z., Jørgensen J.J., Kristoffersen A.K., et al. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014;6:10.3402/jom.v6.23408. Doi: 10.3402/ jom.v6.23408.
  25. Koeth R.A., Levison B.S., Culley M.K. ,et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 0014;00(5):799-810. doi: 10.1016/j.cmet_.2014.10.006.
  26. Wang Z., Klipfell E., Bennett B.J., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. Doi: 10.1038/ nature09922.
  27. Diao H., Jiao A.R., Yu B., et al. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr 2019;14:4. doi: 10.1186/s12263- 019-0626-x.
  28. Parada Venegas D., De la Fuente M.K., Landskron G., et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 0019;10:077. Doi: 10.3389/ fimmu.0019.00077.
  29. Ohata A., Usami M., Miyoshi M. Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition. 0005;01(7-8):838-47. doi: 10.1016/j.nut.0004.10.004.
  30. Naito Y, Yoshikawa T. Rebamipide: a gastrointestinal protective drug with pleiotropic activities. Expert Rev Gastroenterol Hepatol. 2010;4(3):261-70. doi: 10.1586/egh.10.25.
  31. Lai Y, Zhong W., Yu T., et al. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin. PLoS One. 0015;10(7):e0130031. doi: 10.1371/joumal.pone.0130031.
  32. Tanigawa T., Watanabe.T, Otani K., et al. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5. Eur J Pharmacol. 2013;704(1 -3):64-9. doi: 10.1016/j.ejphar. 2013.02.010.
  33. Williams B., Mancia G., Spiering W., et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 0018;39(33):3001-104. Doi: 10.1093/ eurheartj/ehy339.
  34. Chen Y.Y., Chen D.Q., Chen L., et al. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med. 2019;17(1):5. doi: 10.1186/s12967-018-1756-4.
  35. Watanabe T., Takeuchi T., Handa O., et al. A multicenter, randomized, double-blind, placebo-controlled trial of high-dose rebamipide treatment for low-dose aspirin-induced moderate-to-severe small intestinal damage. PLoS One. 0015;10(4):e0100330. doi: 10.1371/journal. pone.0122330.
  36. Yasuda-Onozawa Y, Handa O., Naito Y, et al. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 0017;16(6):8016-00. Doi: 10.3892/ mmr. 2017.7647.
  37. Akagi S., Fujiwara T., Nishida M., et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. Doi: 10.1186/ s40780-019-0146-2.
  38. Tarnawski A.S., Chai J., Pai R., Chiou S.K. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sci. 0004;49(0):000-9. doi: 10.1023/b:ddas.0000017439.60943.5c.
  39. Jhun J., Kwon J.E., Kim S.Y, et al. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation. PLoS One. 0017;10(0):e0171674. doi: 10.1371/journal. pone.0171674.
  40. Choe J.Y, Park K.Y., Lee S.J., et al. Rebamipide inhibits tumor necrosis factor-α-induced interleukin-8 expression by suppressing the NF-B signal pathway in human umbilical vein endothelial cells. Inflamm Res. 0010;59(10):1019-06. doi: 10.1007/s00011-010-0221-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies