The effect of drug therapy and cetuximab on the mutational status of the KRAS gene in patients with squamous cell carcinoma of the tongue and oral floor mucosa


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Squamous cell carcinoma of the tongue and oral floor mucosa is one of the most common localizations of tumors of the head and neck, which is characterized by rapid growth, aggressive course, high mortality, and unfavorable prognosis. Objective. Determination of activating mutations in the KRAS gene in the extracellular DNA of blood plasma in patients with squamous cell carcinoma of the tongue and oral floor mucosa during chemotherapy (CT) with targeted therapy with cetuximab or during standard CT without targeted therapy. Methods. Data on 60 patients who underwent chemotherapy in combination with targeted therapy with cetuximab or standard chemotherapy were analyzed. Depending on the effectiveness of treatment, all patients, according to the RECIST 1.1 criteria, were divided into 2 subgroups: sensitivity to treatment (partial regression and stabilization), and resistance (progression). Before the start of antitumor treatment and after 2 cycles, blood samples with a volume of 9 ml were collected in 2 stages. Plasma was isolated by double centrifugation. All extracellular DNA samples were isolated from blood plasma according to the protocol using the cobas cfDNA Sample Preparation Kit. The presence/absence of 7 activating mutations in the second exon of the KRAS gene was detected by Digital Droplet PCR using the KRAS Screening Multiplex kit (Bio-Rad, USA). The data were analyzed using the QuantaSoft v1.7.4 software. Results. It was revealed that when resistance to chemotherapy and cetuximab develops, the ratio of the mutant KRAS type increased by 1.9 times compared to the initial values (p=0.009), exceeding the same indicator in the subgroup with sensitivity by 3.1 times (p=0.049), while the frequency of occurrence of the mutant type of the KRAS gene in the studied sample decreased by 1.5 times (p=0.05), and increased by 3.5 times compared with the subgroup with sensitivity (p=0.0045). The use of cetuximab resulted in a decrease in the frequency of mutations in the KRAS gene and in an increase in the ratio of the number of DNA copies of the mutant KRAS type to the wild type. Conclusion. Thus, it can be concluded that even before the start of treatment, patients resistant to chemotherapy and cetuximab were characterized by an increased occurrence of mutations in the KRAS gene and, obviously, a large number of tumor cells carrying mutations in this gene. Determination of activating mutations in the KRAS gene in the extracellular DNA of blood plasma makes it possible to predict the development of resistance to targeted therapy at the stages of treatment.

Full Text

Restricted Access

About the authors

A. A Lyanova

National Medical Research Center for Oncology

Email: blackswan-11@mail.ru
Rostov-on-Don, Russia

L. Yu Vladimirova

National Medical Research Center for Oncology

Rostov-on-Don, Russia

D. S Kutilin

National Medical Research Center for Oncology

Rostov-on-Don, Russia

N. A Abramova

National Medical Research Center for Oncology

Rostov-on-Don, Russia

I. L Popova

National Medical Research Center for Oncology

Rostov-on-Don, Russia

N. M Tikhanovskaya

National Medical Research Center for Oncology

Rostov-on-Don, Russia

M. A Teplyakova

National Medical Research Center for Oncology

Rostov-on-Don, Russia

K. A Novoselova

National Medical Research Center for Oncology

Rostov-on-Don, Russia

V. S Myagkova

National Medical Research Center for Oncology

Rostov-on-Don, Russia

F. V Alieva

National Medical Research Center for Oncology

Rostov-on-Don, Russia

L. A Ryadinskaya

National Medical Research Center for Oncology

Rostov-on-Don, Russia

References

  1. Rodrigues R.M., Bernardo V.G., Da Silva S.D., et al. How pathological criteria can impact prognosis of tongue and floor of the mouth squamous cell carcinoma. J Appl OralSci. 2019;28:e20190198. doi: 10.1590/1678-7757-2019-0198. PMID: 31800876; PMCID: PMC6886392.
  2. Ord R.A. Surgical management of the N0 neck in early stage T1-2 oral cancer; a personal perspective of early and late impalpable disease. Oral Maxillofac Surg. 2012;16(2):181-88. doi: 10.1007/s10006-012-0325-x. PMID: 22581159.
  3. Ferlay J., Colombet M., Soerjomataram I., et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-53. doi: 10.1002/ijc.31937. PMID: 30350310.
  4. Wang W.-Y., Chien Y.-C., Wong Y.-K, et al. Effects of kras mutation and polymorphism on the risk and prognosis of oral squamous cell carcinoma. Accepted 22 February 2011 Published on-line 17 June 2011 in Wiley On-line Library (wileyonlinelibrary.com). Doi: 10.1002/ hed.21792.
  5. Liu P, Wang Y., Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B. 2019;9(5):871-79. Doi: 10.1016/j. apsb.2019.03.002. PMID: 31649840; PMCID: PMC6804475.
  6. Huang M., Shen A., Ding J., Geng M. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol. Sci. 2014;35(1):41-50. Doi: 10.1016/j. tips.2013.11.004. PMID: 24361003.
  7. Pylayeva-Gupta Y, Grabocka E., Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761-74. doi: 10.1038/nrc3106. PMID: 21993244; PMCID: PMC3632399.
  8. Young A., Lou D., McCormick F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 2013;3(1):112-23. doi: 10.1158/2159-8290.CD-12-0231. PMID: 23103856.
  9. Владимирова Л.Ю., Льянова А.А., Франциянц Е.М. и др. Молекулярные механизмы резистентности к терапии моноклональными антителами у больных плоскоклеточным раком языка и слизистой дна полости рта. Злокачественные опухоли. 2018;8(4):13-25.
  10. Oellerich M., Schutz E., Beck J., et al. Circulating Cell-Free DNA-Diagnostic and Prognostic Applications in Personalized Cancer Therapy. Ther. Drug Monit. 2019;41(2):115-20. doi: 10.1097/FTD.0000000000000566. PMID: 30883505.
  11. Льянова А.А. Изучение резистентности к анти-EGFR моноклональному антителу у больных плоскоклеточным раком языка и слизистой оболочки дна полости рта. Дисс. канд. мед. наук. Ростов-на-Дону, 2020.
  12. Льянова А.А., Владимирова Л.Ю., Франциянц Е.М. и др. Молекулярные основы современной таргетной терапии плоскоклеточного рака языка и слизистой дна полости рта моноклональными антителами. Злокачественные опухоли. 2017;7:77-83
  13. Lin F., Yao L., Xiao J., et al. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma Onco Targets and Therapy. Department of Orthodontics, Department of Pedodontics, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China. doi: 10.2147/OTT.S67624.
  14. Alorabi M, Shonka N.A., Ganti A.K. EGFR monoclonal antibodies in locally advanced head and neck squamous cell carcinoma: What is their current role? Crit Rev Oncol Hematol. 2016;99:170-79. doi: 10.1016/j.critrevonc. 2015.12.006. PMID: 26797287.
  15. Льянова А.А., ВладимироваЛ.Ю., Ульянова Е.П. и др. Изучение экспрессии EGFR в ткани опухоли у больных местно-распространенным раком полости рта при терапии цетуксимабом. Медицинский совет. 2020;9:182-89.
  16. Boeckx C., Weyn C., Vanden Bempt I., et al. Mutation analysis of genes in the EGFR pathway in Head and Neck cancer patients: implications for anti-EGFR treatment response. BMC. Res Notes. 2014;7:337. doi: 10.1186/1756-0500-7-337. PMID: 24899223; PMCID: PMC4067106.
  17. O'Keefe R.A., Bhola N.E., Lee D.S.,etal. Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance. PLoS One. 2020;15(1):e0227261. doi: 10.1371/journal. pone.0227261. PMID: 31914141; PMCID: PMC6948745.
  18. QX200™ Droplet Reader and QuantaSoft™ Software Instruction Manual Catalog #186-4001, 186-4003.
  19. Manual Тест cobas® EGFR Mutation Test v2.
  20. QX200™ Droplet Generator Instruction Manual Catalog #186-4002.
  21. Lyanova A.A., Vladimirova L.Yu., Engibaryan M.A., et al. The KRAS mutation status and resistance to cetuximab in patients with squamous cell carcinoma of oral cavity. J Clin Oncol. 2020;38(Suppl, abstr.):e15514. Doi: 10.1200/ JCO.2020.38.15_suppl.e15514.
  22. Volckmar A.L., Sultmann H., Riediger A., et al. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Gen Chrom Cancer. 2018;57(3):123-39. doi: 10.1002/gcc.22517. PMID: 29205637.
  23. Ranucci R. Cell-Free DNA: Applications in Different Diseases. Meth. Mol. Biol. 2019;1909:3-12. doi: 10.1007/978-1-4939-8973-7 1. PMID: 30580419.
  24. Lievre A, Laurent-Puig P Genetics: Predictive value of KRAS mutations in chemoresistant CRC. Nat Rev Clin Oncol. 2009;6(6):306-7. doi: 10.1038/nrclinonc.2009.69. PMID: 19483733.
  25. Wheeler D.L., Dunn E.F, Harari P.M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7(9):493-507. Doi: 10.1038/ nrclinonc.2010.97. PMID: 20551942; PMCID: PMC2929287.
  26. Braig F, Voigtlaender M., Schieferdecker A, et al. Liquid biopsy monitoring uncovers acquired RAS-mediated resistance to cetuximab in a substantial proportion of patients with head and neck squamous cell carcinoma. Oncotarget. 2016;7(28):42988-95. Doi: 10.18632/ oncotarget.8943. PMID: 271 19512; PMCID: PMC5190002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies