On the possible relationship between the presence of polymorphic variants of CYP3A4/5 cytochrome genes, their metabolic activity with rivaroxaban pharmacokinetics and the development of bleeding in patients with non-valvular atrial fibrillation and chronic kidney disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The administration of oral anticoagulants in patients with atrial fibrillation (AF) and chronic kidney disease (CKD) is associated with an increased risk of bleeding. Rivaroxaban is metabolised by several pathways, one of which is catalysed by cytochrome P-450 enzymes. Carrying polymorphic variants of genes encoding proteins of cytochrome P-450 system (CYP3A4, CYP3A5) and its metabolic activity may affect rivaroxaban concentration and, consequently, the risk of bleeding.

Objective: to assess the possible relationship between the presence of polymorphic variants of CYP3A5 (rs776746), CYP3A4 (rs35599367) genes, metabolic activity of CYP3A, Cmin,ss of rivaroxaban and bleeding in patients with non-valvular AF and concomitant CKD stages 3 and 4.

Methods. 122 patients from 52 to 97 years old (median age 82 years) with AF combined with CKD stages 3 and 4 were included in the study. Each patient was subjected to pharmacogenetic and pharmacokinetic study, and further the occurrence of bleeding was evaluated during 16 weeks using a special bleeding questionnaire. All patients were further divided according to genotype into «slow» (n=7), intermediate» (n=98) and «normal metaboliser» (n=17) groups followed by analyses of CYP3A metabolic activity, Cmin,ss of rivaroxaban and presence of bleeding events.

Results. During the follow-up period, 48 patients (39.3%) were found to have haemorrhages. The metabolic activity of CYP3A (6-β-hydroxycortisol/cortisol ratio) was statistically significantly higher in patients with bleeding compared to patients without bleeding: 0.8 [0.6; 1.6] and 0.7 [0.5; 1.6] ng/ml, respectively (p=0.046). CYP3A metabolic activity was paradoxically higher in the «slow metaboliser» group compared to the «intermediate» metaboliser group: 2.14 [1.42; 2.38] and 0.80 [0.53; 1.67] ng/ml, respectively (p=0.022).

Conclusion: the influence of rivaroxaban metabolism on the development of bleeding in patients with AF and CKD requires further study.

Full Text

Restricted Access

About the authors

N. A. Shatalova

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0001-6823-6077
Russian Federation, Moscow

K. B. Mirzaev

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0002-9307-4994
Russian Federation, Moscow

Sh. P. Abdullaev

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0001-9001-1499
Russian Federation, Moscow

Zh. A. Sozaeva

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
Russian Federation, Moscow

P. O. Bochkov

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0001-8555-5969
Russian Federation, Moscow

A. V. Asoskova

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0002-2228-8442
Russian Federation, Moscow

N. P. Denisenko

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0003-3278-5941
Russian Federation, Moscow

A. I. Kochetkov

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0001-5801-3742
SPIN-code: 9212-6010
Russian Federation, Moscow

E. Yu. Ebzeeva

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0001-6573-4169
Russian Federation, Moscow

M. S. Chernyaeva

Hospital for War Veterans No. 2 of the Department of Health of Moscow

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0003-3091-7904
Russian Federation, Moscow

V. R. Shastina

Hospital for War Veterans No. 2 of the Department of Health of Moscow

Email: ostroumova.olga@mail.ru
Russian Federation, Moscow

Olga D. Ostroumova

Russian Medical Academy of Continuous Professional Education; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0002-0795-8225
SPIN-code: 3910-6585

Dr. Sci, (Med.), Professor, Head of the Department of Therapy and Polymorbid Pathology n.a. Acad. M.S. Vovsin, Professor at the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

Russian Federation, Moscow; Moscow

D. A. Sychev

Russian Medical Academy of Continuous Professional Education

Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0002-4496-3680
SPIN-code: 4525-7556
Russian Federation, Moscow

References

  1. Virani S.S., Alonso A., Benjamin E.J., et al. Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020;141(9):139–596. Doi: 0.1161/CIR.0000000000000757.
  2. Аракелян М.Г., Бокерия Л.А., Васильева Е.Ю. и др. Фибрилляция и трепетание предсердий. Клинические рекомендации 2020. Россмйский кардиологический журнал. 2021;26(7):4594. [Arakelyan M.G., Bockeria L.A., Vasilieva E.Yu., et al. 2020 Clinical guidelines for Atrial fibrillation and atrial flutter. Russ J Cardiol. 2021;26(7):4594 (In Russ.)]. doi: 10.15829/1560-4071-2021-4594.
  3. Ruff C.T., Giugliano R.P., Braunwald E., et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet.2014;383(9921):955–62. doi: 10.1016/S0140-6736(13)62343-0.
  4. Hijazi Z., Oldgren J., Lindback J., et al. ARISTOTLE and RE-LY Investigators The Novel Biomarker Based ABC (Age, Biomarkers, Clinical History)-Bleeding Risk Score for Patients 140 With Atrial Fibrillation: A Derivation and Validation Study. Lancet. 2016;387(10035):2302–11. doi: 10.1016/S0140- 6736(16)00741-8.
  5. Parker K., Hartemink J., Saha A., et al. A systematic review of the efficacy and safety of anticoagulants in advanced chronic kidney disease. J Nephrol. 2022;35(8):2015–33. doi: 10.1007/s40620-022-01413-x.
  6. Ocak G., Khairoun M., Khairoun O., et al. Chronic kidney disease and atrial fibrillation: A dangerous combination. PLoS One. 2022;17(4):e0266046. doi: 10.1371/journal.pone.0266046.
  7. Patel M.R., Mahaffey K.W., Garg J., et al. ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N EnglJ. Med. 2011;365(10):883–91. doi: 10.1056/NEJMoa1009638.
  8. Bhatia H.S., Hsu J.C., Kim R.J. Atrial fibrillation and chronic kidney disease: A review of options for therapeutic anticoagulation to reduce thromboembolism risk. Clin Cardiol. 2018;41(10):1395–402. doi: 10.1002/clc.23085.
  9. Gnoth M.J., Buetehorn U., Muenster U., et al. In vitroand in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80. doi: 10.1124/jpet.111.180240.
  10. Mueck W., Kubitza D., Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455–66. doi: 10.1111/bcp.12075.
  11. Cosmi B., Salomone L., Cini M., et al. Observational study of the inter-individual variability of the plasma concentrations of direct oral anticoagulants (dabigatran, rivaroxaban, apixaban) and the effect of rs4148738 polymorphism of ABCB1. J Cardiol Ther. 2019;(7):8–14. doi: 10.12970/2311-052X.2019.07.02.
  12. Nakagawa J., Kinjo T., Iizuka M., et al. Impact of gene polymorphisms in drug-metabolizing enzymes and transporters on trough concentrations of rivaroxaban in patients with atrial fibrillation. Basic Clin Pharmacol Toxicol. 2021;128(2):297–304. doi: 10.1111/bcpt.13488.
  13. Ing Lorenzini K., Daali Y., Fontana P., et al. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front Pharmacol. 2016;19;7:494. doi: 10.3389/fphar.2016.00494.
  14. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Inter., Suppl. 2013;3:1–150.
  15. Инструкция по применению лекарственного препарата Ксарелто® для медицинского применения. URL: https://www.rlsnet.ru/drugs/ksarelto-37544. Ссылка активна на 02.03.2024. [Instructions for use of the drug Xarelto® for medical use. URL: https://www.rlsnet.ru/drugs/ksarelto-37544. Link active as of 03/02/2024. (In Russ.)].
  16. Eldesoky E.S., Kamel S.I., Farghaly A.M., et al. Study of the Urinary Ratio of 6 beta-Hydroxycortisol/Cortisol as a Biomarker of CYP3A4 Activity in Egyptian Patients with Chronic Liver Diseases. Biomark Insights. 2007;1:157–64.
  17. Bowman M., Mundell G., Grabell J., et al. Generation and validation of the Condensed MCMDM-1VWD Bleeding Questionnaire for von Willebrand disease. J Thromb Haemost. 2008;6(12):2062–66. doi: 10.1111/j.1538-7836.2008.03182.x.
  18. Elens L., van Gelder T., Hesselink D.A., et al. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenom. 2013 ;14(1):47–62. doi: 10.2217/pgs.12.187.
  19. Chang S.H., Chou I.J., Yeh Y.H., et al. Association Between Use of Non-Vitamin K Oral Anticoagulants With and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation. JAMA. 2017;318(13):1250–59. doi: 10.1001/jama.2017.13883.
  20. Undas A., Drabik L., Potpara T. Bleeding in anticoagulated patients with atrial fibrillation: practical considerations. Kardiol Pol. 2020;78(2):105–16. doi: 10.33963/KP.15205.
  21. Siontis K.C., Zhang X., Eckard A., et al. Outcomes Associated With Apixaban Use in Patients With End-Stage Kidney Disease and Atrial Fibrillation in the United States. Circulation. 2018;138(15):1519–29. doi: 10.1161/CIRCULATIONAHA.118.035418.
  22. Yoon H.Y., Song T.J., Yee J., et al. Association between Genetic Polymorphisms and Bleeding in Patients on Direct Oral Anticoagulants. Pharmaceutics. 2022;14(9):1889. doi: 10.3390/pharmaceutics14091889.
  23. Campos-Staffico A.M., Dorsch M.P., Barnes G.D., et al. Eight pharmacokinetic genetic variants are not associated with the risk of bleeding from direct oral anticoagulants in non-valvular atrial fibrillation patients. Front Pharmacol. 2022;13:1007113. doi: 10.3389/fphar.2022.1007113.
  24. Сычев Д.А., Миннигулов Р.М., Рыжикова К.А. и др. Оценка влияния полиморфизмов генов ABCB1 и CYP3A5 на степень изменения протромбинового времени под влиянием ривароксабана у пациентов после эндопротезирования крупных суставов нижних конечностей. Вестник РГМУ. 2018;(5):119–24. [Sychev D.A., Minnigulov R.M., Ryzhikova K.A., et al. Evaluation of the influence of ABCB1 and CYP3A5 gene polymorphisms on the degree of change of prothrombin time under the influence of rivaroxaban in patients after endoprosthesis of large joints of lower limbs. Bull Rus State Med Univer. 2018;(5):119–24 (In Russ.)]. doi: 10.24075/vrgmu.2018.068.
  25. Sin C.F., Wong K.P., Wong H.M., et al. Plasma Rivaroxaban Level in Patients With Early Stages of Chronic Kidney Disease-Relationships With Renal Function and Clinical Events. Front Pharmacol. 2022;17;13:888660. doi: 10.3389/fphar.2022.888660.
  26. Testa S., Legnani C., Antonucci E., et аl. Drug levels and bleeding complications in atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost. 2019;17(7):1064–72. doi: 10.1111/jth.14457.
  27. Sennesael A.L., Larock A.S., Douxfils J., et al. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J. 2018;16:28. doi: 10.1186/s12959-018-0183-3.
  28. Bozic D., Alicic D., Martinovic D., et al. Plasma Drug Values of DOACs in Patients Presenting with Gastrointestinal Bleeding: A Prospective Observational Study. Medicina. 2023;59(8):1466. doi: 10.3390/medicina59081466.
  29. Кудрявцева А.А., Колпачкова Е.В., Гебекова 3. А. и др. Рецидивирующие кровотечения на фоне стандартной антикоагулянтной терапии у коморбидной пациентки с фибрилляцией предсердий: клиническое наблюдение. Рациональная Фармакотерапия в Кардиологии. 2023;19(3):248–53. [Kudriavtseva A.A., Kolpachkova E.V., Gebekova Z.A., et al. Recurrent bleeding during standard anticoagulant therapy in comorbid patients with atrial fibrillation: a clinical case report. Rational Pharmacoth Cardiol. 2023;19(3):248–53 (In Russ.)]. doi: 10.20996/1819-6446-2023-2900.
  30. Lolodi O., Wang Y.M., Wright W.C., Chen T. Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery. Curr Drug Metab. 2017;18(12):1095–105. doi: 10.2174/1389200218666170531112038.
  31. Andreu F., Colom H., Elens L., et al. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clin Pharmacokinet. 2017;56(8):963–75. doi: 10.1007/s40262-016-0491-3.
  32. Jalil M.H., Hawwa A.F., McKiernan P.J., et al. Population pharmacokinetic and pharmacogenetic analysis of tacrolimus in paediatric liver transplant patients. B. J Clin Pharmacol. 2014;77(1):130–40. doi: 10.1111/bcp.12174.
  33. Jin Y., Wang Y.H., Miao J., et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther. 2007;82(5):579–85.
  34. Yoo H.D., Cho H.Y., Lee Y.B. Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1. Br J Clin Pharmacol. 2010;69(1):27–37. doi: 10.1111/j.1365-2125.2009.03558.x.
  35. Wang D., Guo Y., Wrighton S.A., et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenom. J. 2011;11(4):274–86. doi: 10.1038/tpj.2010.28.
  36. Okubo M., Murayama N., Shimizu M., et al. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci. 2013;38(3):349–54. doi: 10.2131/jts.38.349.
  37. Klein K., Thomas M., Winter S., et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther. 2012;91(6):1044–52. doi: 10.1038/clpt.2011.336.
  38. Moes D.J., Swen J.J., den Hartigh J., et al. Effect of CYP3A4*22, CYP3A5*3, and CYP3A Combined Genotypes on Cyclosporine, Everolimus, and Tacrolimus Pharmacokinetics in Renal Transplantation. CPT. Pharmacometr Syst Pharmacol. 2014;3(2):e100. doi: 10.1038/psp.2013.78.
  39. Lunde I., Bremer S., Midtvedt K., et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol. 2014;70(6):685–93. doi: 10.1007/s00228-014-1656-3.
  40. Jones A.E., Brown K.C., Werner R.E., et al. Variability in drug metabolizing enzyme activity in HIV-infected patients. Eur J Clin Pharmacol. 2010;66(5):475–85. doi: 10.1007/s00228-009-0777-6.
  41. Preskorn S.H., Kane C.P., Lobello K., et al. Cytochrome P450 2D6 phenoconversion is common in patients being treated for depression: implications for personalized medicine. J Clin Psych. 2013;74(6):614–21. doi: 10.4088/JCP.12m07807.
  42. Girardin F., Daali Y., Gex-Fabry M., et al. Liver kidney microsomal type 1 antibodies reduce the CYP2D6 activity in patients with chronic hepatitis C virus infection. J Viral Hepat. 2012;19(8):568–73. doi: 10.1111/j.1365-2893.2011.01578.x.
  43. Thomson B., Nolin K.A., Velenosi T.D., et al. Effect of CKD and Dialysis Modality on Exposure to Drugs Cleared by Nonrenal Mechanisms. Am J Kidney Dis. 2015;65(4):574–82. doi: 10.1053/j.ajkd.2014.09.015.
  44. Guevin C., Michaud J., Naud J., et al. Down-regulation of hepatic cytochrome p450 in chronic renal failure: role of uremic mediators. Br J Pharmacol. 2002;137(7):1039–46. doi: 10.1038/sj.bjp.0704951.
  45. Hanada K., Ogawa R., Son K., et al. Effects of indoxylsulfate on the in vitro hepatic metabolism of various compounds using human liver microsomes and hepatocytes. Nephron Physiol. 2006;103(4):179–86. doi: 10.1159/000092919.
  46. Michaud J., Naud J., Chouinard J., et al. Role of parathyroid hormone in the downregulation of liver cytochrome P450 in chronic renal failure. J Am Soc Nephrol. 2006;17(11):3041–48. doi: 10.1681/ASN.2006010035.
  47. Dickmann L.J., Patel S.K., Rock D.A., et al. Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metab Dispos. 2011;39(8):1415–22. doi: 10.1124/dmd.111.038679.
  48. Mimura H., Kobayashi K., Xu L., et al. Effects of cytokines on CYP3A4 expression and reversal of the effects by anti-cytokine agents in the three-dimensionally cultured human hepatoma cell line FLC-4. Drug Metab Pharmacokinet. 2015;30(1):105–10. doi: 10.1016/j.dmpk.2014.09.004.
  49. Suzuki Y., Muraya N., Fujioka T., et al. Factors involved in phenoconversion of CYP3A using 4β-hydroxycholesterol in stable kidney transplant recipients. Pharmacol Rep. 2019;71(2):276–281. doi: 10.1016/j.pharep.2018.12.007.
  50. Lenoir C., Terrier J., Gloor Y., et al. Impact of the Genotype and Phenotype of CYP3A and P-gp on the Apixaban and Rivaroxaban Exposure in a Real-World Setting. J Pers Med. 2022;12(4):526. doi: 10.3390/jpm12040526.
  51. Ferri N., Colombo E., Tenconi M., et al. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceut. 2022;14(6):1120. doi: 10.3390/pharmaceutics14061120.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies