The role of rs12976445 polymorphism in the MIR125A gene in the clinical course of diffuse toxic goiter: a retrospective clinical study


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Background. Over the past years, the role of microRNAs in the pathogenesis of autoimmune thyroid diseases, including diffuse toxic goiter (DTG), has been actively studied. To date, few studies on the evaluation of single-nucleotide polymorphism (SNP) rs12976445 in the MIR125A gene in patients with DTG have been conducted. Among the Russian population of patients with DTG, such study was not performed. Objective. Evaluation of the effect of rs12976445 polymorphism in the MIR125A gene on the course of DTG. Methods. We conducted a retrospective clinical study. 270 patients with DTG, residents of St. Petersburg, and 200 healthy individuals of comparison group were examined. In all patients with DTG, thyroid-stimulating hormone (TSH), free T4 (sTT4), free T3 (sTT3), and anti-TSH receptor antibody (anti-rTSH) levels were assessed. The identification of SNP rs12976445 in the MIR125A gene was carried out by polymerase chain reaction followed by restriction enzyme digest analysis. Results. The MIR125A genotype distribution and the allele frequency did not differ in patients with DTG and in the comparison group. Carriage of the SNP rs12976445 C allele in the MIR125A gene was found to be associated with an increase in the risk of thyrotoxicosis recurrence and the absence of remission of DTG by 4.5 times. Conclusion. Thus, the presented study has identified genetic markers of the adverse course of DTG.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Anna Volkova

Pavlov First St. Petersburg State Medical University

Email: volkovaa@mail.ru
Dr. Sci. (Med.), Professor

N. Peykrishvili

Pavlov First St. Petersburg State Medical University

Department of Faculty Therapy with Course of Endocrinology, Cardiology and Functional Diagnostics n.a. G.F. Lang with the Clinic

S. Dora

Pavlov First St. Petersburg State Medical University

Department of Faculty Therapy with Course of Endocrinology, Cardiology and Functional Diagnostics n.a. G.F. Lang with the Clinic

I. Abramova

Pavlov First St. Petersburg State Medical University

Department of Faculty Therapy with Course of Endocrinology, Cardiology and Functional Diagnostics n.a. G.F. Lang with the Clinic

G. Allamova

Pavlov First St. Petersburg State Medical University

Department of Faculty Therapy with Course of Endocrinology, Cardiology and Functional Diagnostics n.a. G.F. Lang with the Clinic

Әдебиет тізімі

  1. Prabhakar B.S., Bahn R.S., Smith TJ. Current perspective on the pathogenesis of Graves' disease and ophthalmopathy. Endocrin Rev. 2003;24:802-35. doi: 10.1210/er.2002-0020.
  2. Carthew R.W., Sontheimer E.J. Origins and mechanisms of miRNA and siRNAs. Cell. 2009;136:642-55. Doi: 10.1016/j. cell.2009.01.035.
  3. Hezova R., Slaby O., Faltejskova P, et al. MicroRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol. 2010;260:70-4. Doi: 10.1016/j. cellimm.2009.10.012.
  4. Nakamachi Y, Kawano S., Takenokuchi M., et al. MicroRNA-124a is key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthr Rheumatol. 2009;60:1294-304. doi: 10.1002/art.24475.
  5. Wang H., Peng W., Ouyang X., et al. Circulating microRNA as candidate biomarkers in patients with systemic lupus erythematosus. Translat Res. 2012;160:198-206. Doi: 10.1016/j. trsl.2012.04.002.
  6. Liu R., Ma X., Xu L., et al. Differential microRNA expression in peripheral blood mononuclear cells from Graves' disease patients. J Clin Endocrinol Metab. 2012;97(6):E968-72. Doi: 10.1210/ jc.2011-2982.
  7. Qin Q., Wang X., Yan N., et al. Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves' disease. Cell Physiol Biochem. 2015;35(5):1934 42. Doi: https://doi.org/10.1159/000374002
  8. Inoue Y, Watanabe M., Inoue N., et al. Associations of single nucleotide polymorphisms in precursor-microRNA (miR)-125a and the expression of mature miR-125a with the development and prognosis of autoimmune thyroid diseases. Clin Exp Immunol. 2014;178(2):229-35. doi: 10.1111/cei.12410.
  9. Cai T.T., Li J., An X., et al. Polymorphisms in MIR499A and MIR125A gene are associated with autoimmune thyroid diseases. Mol Cell Endocrinol. 2017;440:106-15. Doi: 10.1016/j. mce.2016.11.017.
  10. Blin N., Stafford D.W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucl Acid Res. 1976;3(9):2303-308. doi: 10.1093/nar/3.9.2303.
  11. Chang R.C., Ying W., Bazer F.W., et al. MicroRNAs control macrophage formation and activation: the inflammatory link between obesity and cardiovascular diseases. Cell. 2014;3:702-12: doi: 10.3390/cells3030702.
  12. Bartel D.P MicroRNA: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97. doi: 10.1016/s0092-8674(04)00045-5.
  13. Kim S.W., Ramasamy K., Bouamar H., et al. MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha induced protein 3 (TNFAIP3, A20). Proceed Nat Acad Sci. 2012;109:7865-70. Doi: 10.1073/ pnas.1200081109.
  14. Zhao X., Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthr Rheumatol. 2010,62:342535. doi: 10.1002/art.27632.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2020

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>