Severe bronchial asthma: mechanism of development, diagnostic methods and main approaches to therapy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Currently, there is a tendency towards an increase in the prevalence of allergic diseases, including bronchial asthma (BA). Most cases of BA in children are mild, and symptoms are well controlled with timely selection of basic therapy. Despite this, according to some estimates, from 2 to 10% of children have persistent severe bronchial asthma (SBA) and are at risk of life-threatening exacerbations (including asthmatic status), as well as deterioration in quality of life due to progressive remodeling of the airways and decreased ventilatory lung capacity. This can subsequently lead to early disability and socio-economic difficulties for both the children themselves (missed classes, narrowing the range of career choices in the future) and for people caring for them. The global problem of SBA in the world is associated with the risk of death as a result of complications during its course at an early age. That is why timely diagnosis and effective treatment of SBA is one of the most pressing healthcare challenges.

全文:

受限制的访问

作者简介

Pavel Berezhansky

Morozov Children’s City Clinical Hospital; I.M. Sechenov First Moscow State Medical University (Sechenov University); Research Clinical Institute of Childhood, Ministry of Healthcare of the Moscow Region; Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: p.berezhanskiy@mail.ru
ORCID iD: 0000-0001-5235-5303
SPIN 代码: 1480-9900

Dr. Sci. (Med.), Associate Professor at the Department of Pediatric Diseases, Pediatrician, Pulmonology Department, Associate Professor at the Department of Clinical Immunology, Allergology and Adaptology, Faculty of Continuous Professional Education, Medical Institute Leading Researcher, Department of Pediatrics

俄罗斯联邦, Moscow; Moscow; Moscow Region; Moscow

Anastasia Khurgaeva

Morozov Children’s City Clinical Hospital

编辑信件的主要联系方式.
Email: ipadmedic@mail.ru
ORCID iD: 0009-0009-0887-729X
SPIN 代码: 2309-9893

Resident Physician in Pediatrics

俄罗斯联邦, Moscow

Aleksandr Malakhov

Morozov Children’s City Clinical Hospital; I.M. Sechenov First Moscow State Medical University (Sechenov University); Research Clinical Institute of Childhood, Ministry of Healthcare of the Moscow Region

Email: alexis4591m@mail.ru
ORCID iD: 0000-0002-2686-8284
SPIN 代码: 1749-0503

Dr. Sci. (Med.), Chief External Expert in Pediatric Pulmonology of the Moscow Healthcare Department of and the Ministry of Healthcare of the Moscow Region; Head of the Department of Pediatrics, Research Clinical Institute of Childhood, Ministry of Healthcare of the Moscow Region, Pulmonologist

俄罗斯联邦, Moscow; Moscow; Moscow Region

Tatyana Gutyrchik

Morozov Children’s City Clinical Hospital

Email: tanya_2904@list.ru
ORCID iD: 0000-0002-8421-1694
SPIN 代码: 9592-5776

Pediatrician, Pulmonologist

俄罗斯联邦, Moscow

Natalia Kolosova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: kolosovan@mail.ru
ORCID iD: 0000-0001-5071-9302
SPIN 代码: 7467-4229

Cand. Sci. (Med.), Associate Professor at the Department of Pediatric Diseases

俄罗斯联邦, Moscow

Evgenia Deeva

Morozov Children’s City Clinical Hospital

Email: evgenia.v.deeva@gmail.com
ORCID iD: 0000-0002-0352-2563
SPIN 代码: 9924-0270

Cand. Sci. (Med.), Pediatrician, Pulmonologist, Head of the Pulmonology Department

俄罗斯联邦, Moscow

参考

  1. Клинические рекомендации. Бронхиальная астма. Возрастная группа: дети/взрослые. 20.02.2024 г. (утверждено Минздравом России). [Clinical guidelines. Bronchial asthma. Age group: children/adults. 02/20/2024 (approved by the Ministry of Health of the Russian Federation). (In Russ.)].
  2. Потапова Н.Л., Гаймоленко И.Н., Смоляков Ю.Н. Анализ значимых факторов при тяжелой бронхиальной астме у детей. Вопросы практической педиатрии. 2020;1(15):35–41. [Potapova N.L., Gaimolenko I.N., Smolyakov Yu.N. Analysis of significant factors in severe bronchial asthma in children. Voprosy prakticheskoy pediatrii. 2020;1(15):35–41. (In Russ.)]. doi: https://dx.doi.org/10.20953/1817-7646-2020-1-35-41
  3. Бокова Т.А., Карташова Д.А., Троицкая Е.В., Будзинский Р.М. Клинико-эпидемиологическая характеристика и качество контроля бронхиальной астмы у детей, проживающих в Московской области. Профилактическая медицина. 2022;2(25):32–36. [Bokova T.A., Kartashova D.A., Troitskaya E.V., Budzinsky R.M. Clinical and epidemiological characteristics and quality of bronchial asthma control in children living in the Moscow region. Profilakticheskaya medicina. 2022;2(25):32–36. (In Russ.)]. doi: https://dx.doi.org/10.17116/profmed20222502132
  4. Dharmage S.C., Perret J., Custivic A. Epidemiology of Asthma in Children and Adults. Frontiers in Pediatrics. 2019;7:212–216. doi: https://dx.doi.org/10.3389/fped.2019.00246
  5. Карцева Т.В., Кондюрина Е.Г., Елкина Т.Н., Зеленская В.В. Мониторинг распространенности сочетанных аллергических заболеваний у новосибирских школьников. Вопросы современной педиатрии. 2006;1(5):248. [Kartseva T.V., Kondyurina E.G., Elkina T.N., Zelenskaya V.V. Monitoring the prevalence of combined allergic diseases in Novosibirsk schoolchildren. Voprosy sovremennoy pediatrii. 2006;1(5):248. (In Russ.)].
  6. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Бронхиальная астма: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022;3(32):393–447. [Chuchalin A.G., Avdeev S.N., Aisanov Z.R., et al. Bronchial asthma: federal clinical guidelines for diagnosis and treatment. Pulmonology=Pulmonologiya. 2022;3(32):393–447. (In Russ.)]. doi: https://dx.doi.org/10.18093/0869-0189-2022-32-3-393-447
  7. Куличенко Д.С., Павлова К.С., Курбачева О.М., Ильина Н.И. Персонализированная таргетная терапия атопической бронхиальной астмы среднетяжелого и тяжелого течения в России. Медицинский совет. 2022;4(16):15–23. [Kulichenko D.S., Pavlova K.S., Kurbacheva O.M., Il`ina N.I. Personalized targeted therapy of moderate to severe atopic bronchial asthma in Russia. Medical Council=Meditsinskiy sovet. 2022;4(16):15–23. (In Russ.)]. doi: https://dx.doi.org/10.21518/2079-701X-2022-16-4-15-23
  8. Gülden P.С., Seçil K.Ö., Özge C.B., et al. Biologics for the treatment of severe asthma: Current status report 2023. Tuberk Toraks. 2023;2(71):176–187. doi: https://dx.doi.org/10.5578/tt.20239921
  9. Куликов Е.С., Огородова Л.М., Фрейдин М.Б. и др. Молекулярные и фармакогенетические механизмы тяжелой бронхиальной астмы. Актуальные вопросы патофизиологии.2013;3:15–23. [Kulikov E.S., Ogorodova L.M., Freidin M.B., et al. Molecular and pharmacogenetic mechanisms of severe bronchial asthma. Aktual`nye voprosy patofiziologii. 2013;3:15–23. (In Russ.)].
  10. Кытикова О.Ю., Новгородцева Т.П., Антонюк М.В., Гвозденко Т.А. Роль нейротрофических факторов роста в патофизиологии бронхиальной астмы, сочетанной с ожирением. Бюллетень сибирской медицины. 2021;1:158–167. [Kytikova O.Yu., Novgorodceva T.P., Antonyuk M.V., Gvozdenko T.A. The role of neurotrophic growth factors in the pathophysiology of bronchial asthma combined with obesity. Byulleten sibirskoy meditsiny. 2021;1:158–167. (In Russ.)]. doi: https://dx.doi.org/10.20538/1682-0363-2021-1-158-167
  11. Just J., Deschildre A., Lejeune S., Amat F. New perspectives of childhood asthma treatment with biologics. Pediatr Allergy Immunol. 2019;2(30):159–171. doi: https://dx.doi.org/10.1111/pai.13007
  12. Kuruvilla M.E., Lee F.E.-H., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56:219–33. doi: https://dx.doi.org/10.1007/s12016-018-8712-1
  13. Heijink I.H, Kuchibhotla V., Roffel M.P., et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75:1902–1917. doi: 1https://dx.doi.org/0.1111/all.14421
  14. Haddad A., Gaudet M., Plesa M. et al. Neutrophils from severe asthmatic patients induce epithelial to mesenchymal transition in healthy bronchial epithelial cells. Respiratory Research. 2019;1(20):234. doi: https://dx.doi.org/10.1186/s12931-019-1186-8
  15. Mogensen I., Alving K., Dahlen S-E. Et al. Fixed airflow obstruction relates to eosinophil activation in asthmatics. Clinical and Experimental Allergy. 2019;49:155–162. doi: https://dx.doi.org/10.1111/cea.13302
  16. Крапошина А.Ю., Собко Е.А., Демко И.В. и др. Современное представление о тяжелой бронхиальной астме. Архивъ внутренней медицины. 2022;2:113–122. [Kraposhina A.Yu., Sobko E.A., Demko I.V., et al. Modern concept of severe bronchial asthma. Arkhiv vnutrenney meditsiny. 2022;2:113–122. (In Russ.)]. doi: https://dx.doi.org/10.20514-6704-2021-12-2-113-122
  17. Ricciardolo F., Sorbello V., Folino A., et al. Identification of IL-17F/frequent exacerbator endotype in asthma. Allergy Clin Immunol. 2017;140:395–406. doi: https://dx.doi.org/10.1016/j.jaci.2016.10.034
  18. Vroman H., Bergen I.M., Hulst J., et al. TNF-alpha-induced protein 3 levels in lung dendritic cells instruct TH2 or TH17 cell differentiation in eosinophilic or neutrophilic asthma. J Allergy Clin Immunol. 2018;141:1620–1633. doi: https://dx.doi.org/10.1111/cea.12834
  19. Бабахин А.А., Ласкин А.А., Никонова А.А. и др. Моделирование бронхиальной астмы с нейтрофильным фенотипом воспаления. Иммунология. 2017;4(38):199–205. [Babakhin A.А., Laskin A.A., Nikonova A.A., et al. Modeling of bronchial asthma with a neutrophilic inflammatory phenotype. Immunology=Immunologiya. 2017;4(38):199–205. (In Russ.)].
  20. Global Initiative for Asthma Global strategy for asthma management and prevention, 2024 report URL: https://ginasthma.org/2024-report/
  21. Kian F.Ch., Piers D., Hisham A.-W., et al. Characteristics, phenotypes, mechanisms and management of severe asthma. Chin Med. 2022;10(135):1141–1155. doi: https://dx.doi.org/10.1097/CM9.0000000000001990
  22. Omraninava M., Eslami M.M., Aslani S., et al. Interleukin 13 gene polymorphism and susceptibility to asthma: a meta-regression and meta-analysis. European Annals of Allergy and Clinical Immunology. 2020;180:1764–1489. doi: https://dx.doi.org/10.23822/EurAnnACI.1764-1489.180
  23. Gao Y., Xiao H., Wang Y., et al. Association of single-nucleotide polymorphisms in toll-like receptor 2 gene with asthma susceptibility: A meta-analysis. Medicine. 2017;96:e6822. doi: https://dx.doi.org/10.1097/MD.0000000000006822
  24. Майлян Э.А., Резниченко Д.Э. Ассоциация полиморфизма генов системы витамина Д с некоторыми заболеваниями человека. Вятский медицинский вестник. 2017;2(54):30–40. [Maylyan E.A., Reznicenko D.E. Association of polymorphism of genes of the vitamin D system with some human diseases. Vyatskiy meditsinskiy vestnik. 2017;2(54):30–40. (In Russ.)].
  25. Stein M.M., Thompson E.E., Schoettler N.A. Decade of Research on the 17q12-21 Asthma Locus: Piecing Together the Puzzle. J Allergy Clin Immunol. 2018;142(3):749–764. doi: https://dx.doi.org/10.1016/j.jaci.2017.12.974
  26. Геппе Н.А., Колосова Н.Г., Кондюрина Е.Г. и др. Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика», 2017. [Geppe N.A., Kolosova N.G., Kondyurina E.G. et al. National program «Bronchial asthma in children. Treatment strategy and prevention», 2017. (In Russ.)].
  27. Бережанский П.В., Гутырчик Т.А., Малахов А.Б. и др. Особенности изменений в микроциркуляторном русле у детей с отягощенным аллергоанамнезом. Педиатрия. Consilium Medicum. 2022;4:344–348. [Berezhansky P.V., Gutyrchik T.A., Malakhov A.B. et al. Features of changes in the microcirculatory bed in children with a complicated allergy history. Pediatriya. Consilium Medicum. 2022;4:344–348. (In Russ.)].
  28. Удальцова Е.В., Мельникова И.М., Мизерницкий Ю.Л. Клиническое значение параметров капиллярного русла, вариабельности сердечного ритма, компьютерной бронхографии в дифференциальной диагностике заболеваний, сопровождающихся длительным кашлем у детей. Пульмонология. 2021;6(31):739-748. [Udaltsova E.V., Melnikova I.M., Mizernitsky Yu.L. Clinical significance of capillary bed parameters, heart rate variability, and computed bronchography in differential diagnostics of diseases accompanied by prolonged cough in children. Pulmonology=Pulmonologiya. 2021;6(31):739–748. (In Russ.)].
  29. Rodrigo- Munoz J.M., Gil-Martínez M., Lorente- Sorolla C., et al. miR-144-3p is a Biomarker Related to Severe Corticosteroid-Dependent Asthma. Front Immunol. 2022;13:85–87. doi: https://dx.doi.org/10.3389/fimmu.2022.858722
  30. Elkashef S.M., Ahmad S.E., Soliman Y.M.A., Mostafa M.S. Role of microR NA-21 and microRNA-155 as biomarkers for bronchial asthma. Innate Immun. 2021;1(27):61–69. doi: https://dx.doi.org/10.1177/1753425920901563
  31. Aripova A., Akparova A., Bersimbaev R. The Potential Role of miRNA-19b-3p and miRNA-320c in Patients with Moderate Bronchial Asthma. Microrna. 2020;5(9):373–377. doi: https://dx.doi.org/10.2174/2211536609666201221122715
  32. Аntosova M., Mokra D., Tonhajzerova I., et al. Nasal nitric oxide in healthy adults – reference values and affecting factors. Physiol Res. 2017;66:247–255. doi: https://dx.doi.org/10.1007/5584-2016-31
  33. Arnold R.J.G., Massanari M., Lee T.A. et al. A review of the utility and cost effectiveness of monitoring fractional exhaled nitric oxide (FeNO) in asthma management. Manag. Care. 2018;7(27):34–41.
  34. Kunc P., Fabry J., Pecova R., Lucanska M. Biomarkers of Bronchial Asthma. Physiol. Res. 2020;69:29–34. doi: https://dx.doi.org/10.33549/physiolres.934398
  35. Геппе Н.А., Глухова М.В., Колосова Н.Г. и др. Оксид азота выдыхаемого воздуха у детей с легкой бронхиальной астмой в мониторинге противовоспалительной терапии. Педиатрия. 2020;10(19):37–41. [Geppe N.A., Glukhova M.V., Kolosova N.G., et al. Exhaled air nitric oxide in children with mild bronchial asthma in monitoring anti-inflammatory therapy. Pediatrics=Pediatriya. 2020;10(19):37–41. (In Russ.)]. doi: https://dx.doi.org/10.31550/1727-2378-2020-19-10-37-41
  36. Trivedi M., Denton E. Asthma in children and adults – what are the differences and what can they tell us about asthma? Front Pediatr. 2019;7:256. doi: https://dx.doi.org/10.3389/fped.2019.00256
  37. Nikolaos G.P., Leonard B.B., Daniel J.J., et al. Type 2 Inflammation and Asthma in Children: A Narrative Review. 2024;9(12):2310–2324. doi: https://dx.doi.org/10.1016/j.jaci.2023.09.044
  38. Потапова Н.Л., Гаймоленко И.Н. Биомаркеры ремоделирования дыхательных путей при бронхиальной астме. Доктор.Ру. 2020;11(19):27–31. [Potapova N.L., Gaimolenko I.N. Biomarkers of airway remodeling in bronchial asthma. Doktor.Ru. 2020;11(19):27–31. (In Russ.)]. doi: https://dx.doi.org/10.31550/1727-2378-2020-19-11-27-31
  39. Corrado P., Giulia P., Claudia C., et al. Biologics in severe asthma. Minerva Medica. 2022;19(113):51–62. doi: https://dx.doi.org/10.23736/S0026-4806.21.07296-7
  40. Клинические рекомендации Российской Федерации «Тяжелая бронхиальная астма» (согласительный доклад объединенной группы экспертов), 2018. [Clinical guidelines of the Russian Federation “Severe bronchial asthma” (consensus report of the joint expert group), 2018. (In Russ.)].
  41. Howell I., Howell A., Pavord I.D. Type 2 inflammation and biological therapies in asthma: Targeted medicine taking flight. Experimental Medicine Division. 2023;7(220). doi: https://dx.doi.org/10.1084/jem.20221212
  42. Наумова В.В., Бельтюков Е.К., Киселева Д.В. и др. Омализумаб: четверть века в борьбе с Т-2 воспалительными заболеваниями верхних и нижних дыхательных путей. Медицинский совет. 2023;20(17):68–83. [Naumova V.V., Beltyukov E.K., Kiseleva D.V. et al. Omalizumab: a quarter of a century in the fight against T-2 inflammatory diseases of the upper and lower respiratory tract. Medical Council=Meditsinskiy sovet. 2023;20(17):68–83. (In Russ.)]. doi: https://dx.doi.org/10.21518/ms2023-400
  43. Sastre J., Dfvila I. Dupilumab: A New Paradigm for the Treatment of Allergic Diseases. Investig Allergol Clin Immunol. 2018;3(28):139–150. doi: https://dx.doi.org/10.18176/jiaci.0254
  44. Castro M., Corren J., Pavord I.D., et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018;26(378):2486–2496. doi: https://dx.doi.org/10.1056/NEJMoa1804092
  45. Бекетова Т.В., Арсеньев Е.В. Интерлейкин-5 – новая мишень для терапии эозинофильного гранулематоза с полиангиитом. Научно-практическая ревматология. 2020;3(58):321–329. [Beketova T.V., Arsenyev E.V. Interleukin-5: A New Target for the Treatment of Eosinophilic Granulomatosis with Polyangiitis. Nauchno-prakticheskaya revmatologiya. 2020;3(58):321–329. (In Russ.)].
  46. Gülden I.Y., Cetin G.P., Arslan B., et al. Biological therapy management from the initial selection of biologics to switching between biologics in severe asthma. Tuberk Toraks.2023;1(71):75–93. doi: https://dx.doi.org/10.5578/tt.20239910
  47. Ненашева Н.М. Тезепелумаб – новый генно-инженерный биологический препарат для лечения тяжелой бронхиальной астмы. Практическая пульмонология. 2023;2:3–13. [Nenasheva N.M. Tezepelumab is a new genetically engineered biological drug for the treatment of severe bronchial asthma. Prakticheskaya pulmonologiya. 2023;2:3–13. (In Russ.)]. doi: https://dx.doi.org/10.24412/2409-6636-2023-12872
  48. Афонина И.А., Шкодкина С.А. Анти-TSLP терапия тяжелой бронхиальной астмы. Актуальные проблемы медицины. 2023;4(46):333–341. [Afonina I.A., Shkodkina S.A. Anti-TSLP therapy for severe bronchial asthma. Aktualnye problemy meditsiny. 2023;4(46):333–341. (In Russ.)].doi: https://dx.doi.org/10.52575/2687-0940-2023-46-4-333-341

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2025