A modern view on the management of patients with infantile Pompe disease


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Background. Pompe disease, also known as type II glycogenosis, is a metabolic disorder that causes glycogen to be deposited within lysosomes in muscle tissue. CRIM status may influence the management and prognosis of patients with infantile Pompe disease. The article presents the experience of managing a patient with a CRIM-negative status in Pompe disease and demonstrates the importance of early diagnosis of the disease. Objective. Substantiation of the relevance of determining the CRIM status in patients with Pompe disease and the importance of early diagnosis of the disease. Methods. In the period from 2011 to 2020, 12 patients (6 boys and 6 girls) with infantile Pompe disease, confirmed both by enzyme diagnostics and by the results of genetic testing, were followed-up by doctors of the Cardiology Department of the National Research Center for Children’s Health.all patient received ERT by intravenous recombinant human acid α-glucosidase. Currently, 2 patients continue to be followed-up in the clinic. Clinical (family history taking, examination of the patient), laboratory (determination of the creatinine phosphokinase, creatine phosphokinase-MB, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, natriuretic peptide levels), instrumental (echocardiography, electrocardiography, chest x-ray, ultrasound examination of the kidneys and abdominal organs), molecular genetic (GAA gene sequencing by direct automatic Sanger sequencing) and biochemical (enzyme diagnostics by tandem mass spectrometry) were used. Results. ERT is most promising when it is started before the onset of clinical manifestations, which makes early diagnosis of the disease extremely important. The induction of immune tolerance in CRIM-negative patients may reduce the formation of antibodies to alglucosidase α, allowing to enhance the effectiveness of therapy in children of this category. In patients with Pompe disease who demonstrate an insufficient clinical response to standard ERT regimens, an increase in the dose and/or frequency of administration of the drug can be considered.

Texto integral

Acesso é fechado

Sobre autores

Leila Gandaeva

National Medical Research Center for Children's Health

Email: dr.gandaeva@gmail.com
Cand. Sci. (Med.), Senior Researcher Moscow, Russia

E. Basargina

National Medical Research Center for Children's Health; Sechenov University

Moscow, Russia

O. Zharova

National Medical Research Center for Children's Health

Moscow, Russia

O. Kondakova

National Medical Research Center for Children's Health

Moscow, Russia

A. Rozhkova

V.P. Polyakov Samara Regional Clinical Cardiological Dispensary

Samara, Russia

A. Pushkov

National Medical Research Center for Children's Health

Moscow, Russia

K. Savostyanov

National Medical Research Center for Children's Health

Moscow, Russia

Bibliografia

  1. Hirschhorn R., Reuser A.J.J. Glycogen storage disease type II: Acid α-glucosidase (acid maltase) deficiency. In: C. Scriver, A. Beaudet, D. Valle, W. Sly, (Ed.). The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2001. С. 3389-420.
  2. van der Ploeg A.T., Reuser A.J. Pompe's disease. Lancet. 2008;372(9646):1342-53. doi: 10.1016/S0140-6736(08)61555-X.
  3. Hahn A., Hennermann J.B., Huemer M., et al. Diagnosis and Care of Infants and Children with Pompe Disease. Klin Padiatr. 2020 Feb 18. English. doi: 10.1055/a-1110-7335.
  4. van der Beek N.A., van Capelle C.I., van der Velden-van Etten K.I., et al. Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe disease. Mol Genet Metab. 2011;104(1-2):129-36. doi: 10.1016/j.ymgme.2011.06.012.
  5. van den Hout H.M., Hop W., van Diggelen O.P., et al. The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112(2):332-40. doi: 10.1542/peds.112.2.332.
  6. Winchester B., Bali D., Bodamer O.A., et al. Methods for a prompt and reliable laboratory diagnosis of Pompe disease: report from an international consensus meeting. Mol Genet Metab. 2008;93(3):275-81. Doi: 10.1016/j. ymgme.2007.09.006.
  7. van der Ploeg A.T., Kruijshaar M.E., Toscano A., et al. European Pompe Consortium. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: a 10-year experience. Eur J Neurol. 2017;24(6):768-e31. Doi: 10.1111/ ene.13285.
  8. Kishnani P.S., Goldenberg P.C., DeArmey S.L., et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99(1):26-33. doi: 10.1016/j.ymgme.2009.08.003.
  9. Pompe disease GAA variant database. URL: https://www.pompevariantdatabase.nl.
  10. Савостьянов К.В., Никитин С.С., Карпачёва К.Е. Лабораторные исследования и болезнь Помпе: от подозрения до мониторинга терапии. Нервно-мышечные болезни. 2016;6(1):54-62. doi: 10.17650/2222-8721-2016-6-1-54-62.
  11. DeRuisseau L.R., Fuller D.D., Qiu K., et al. Neural deficits contribute to respiratory insufficiency in Pompe disease. Proc Natl Acad Sci USA. 2009;106(23):9419-24. Doi: 10.1073/ pnas.0902534106.
  12. Fuller D.D., ElMallah M.K., Smith B.K., et al. The respiratory neuromuscular system in Pompe disease. Respir Physiol Neurobiol. 2013;189(2):241-49. Doi: 10.1016/j. resp.2013.06.007.
  13. Turner S.M., Hoyt A.K., ElMallah M.K., et al. Neuropathology in respiratory-related motoneurons in young Pompe (Gaa(-/-)) mice. Respir Physiol Neurobiol. 2016;227:48-55. doi: 10.1016/j.resp.2016.02.007.
  14. McCall A.L., Salemi J., Bhanap P, et al. The impact of Pompe disease on smooth muscle: a review. J Smooth Muscle Res. 2018;54(0):100-18. doi: 10.1540/jsmr.54.100.
  15. Kishnani P.S., Steiner R.D., Bali D., et al. Pompe disease diagnosis and management guideline. Genet Med. 2006;8(5):267-88. doi: 10.1097/01.gim.0000218152.87434.f3.
  16. Kishnani P.S., Nicolino M., Voit T., et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr. 2006;149(1):89-97. doi: 10.1016/j.jpeds.2006.02.035.
  17. Kishnani P.S., Corzo D., Nicolino M., et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurol. 2007;68(2):99-109. Doi: 1 0.1212/01.wnl.0000251268.41188.04. [Epub 2006 Dec 6. Erratum in: Neurology. 2008;71(21):1748.].
  18. Kishnani P.S., Corzo D., Leslie N.D., et al. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res. 2009;66(3):329-35. Doi: 10.1203/ PDR.0b013e3181b24e94.
  19. Chen M., Zhang L., Quan S. Enzyme replacement therapyforinfantile-onsetPompedisease.Cochrane Database Syst Rev. 2017;11(11):CD011539. doi: 10.1002/14651858.CD011539.pub2.
  20. van Gelder C.M., Poelman E., Plug I., et al. Effects of a higher dose of alglucosidase alfa on ventilatorfree survival and motor outcome in classic infantile Pompe disease: an open-label single-center study. J Inherit Metab Dis. 2016;39(3):383-90. doi: 10.1007/s10545-015-9912-y.
  21. Khan A.A., Case L.E., Herbert M., et al. Higher dosing of alglucosidase alfa improves outcomes in children with Pompe disease: a clinical study and review of the literature. Genet. Med. 2020;22(5):898-907. Doi: 10.1038/ s4 1 43 6-019-0738-0. [Epub 2020 Jan 6. PMID: 31904026; PMCID: PMC7469631].
  22. Chien Y.H., Tsai W.H., Chang C.L., et al. Earlier and higher dosing of alglucosidase alfa improve outcomes in patients with infantile-onset Pompe disease: Evidence from real-world experiences. Mol Genet Metab Rep. 2020;23:100591. doi: 10.1016/j.ymgmr.2020.100591.
  23. Hahn A., Schänzer A. Long-term outcome and unmet needs in infantile-onset Pompe disease. Ann. Transl. Med. 2019;7(13):283. doi: 10.21037/atm.2019.04.70.
  24. Banugaria S.G., Prater S.N., Patel T.T., et al. Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic infantile pompe disease: a step towards improving the efficacy of ERT PLoS One. 2013;8(6):e67052. doi: 10.1371/journal. pone.0067052.
  25. Desai A.K., Baloh C.H., Sleasman J.W., et al. Benefits of Prophylactic Short-Course Immune Tolerance Induction in Patients With Infantile Pompe Disease: Demonstration of Long-Term Safety and Efficacy in an Expanded Cohort. Front. Immunol. 2020;11:1727. Doi: 10.3389/ fimmu.2020.01727.
  26. Kazi Z.B., Desai A.K., Berriër K.L., et al. Sustained immune tolerance induction in enzyme replacement therapy-treated CRIM-negative patients with infantile Pompe disease. JCI Insight. 2017;2(16):e94328. doi: 10.1172/jci. insight.94328.
  27. van Capelle C.I., van der Meijden J.C., van den Hout J.M., et al. Childhood pompe disease: clinical spectrum and genotype in 31 patients. Orphanet J Rare Dis. 2016;11:65. doi: 10.1186/s13023-016-0442-y.
  28. Beck M. Alglucosidase alfa: Long term use in the treatment of patients with Pompe disease. Clin Risk Manag. 2009;5:767-72. Doi: 10.2147/ tcrm.s5776.
  29. Do H.V., Khanna R., Gotschall R. Challenges in treating Pompe disease: an industry perspective. Ann Transl Med. 2019;7(13):291. doi: 10.21037/atm.2019.04.15.
  30. Desai A.K., Kazi Z.B., Bali D.S., Kishnani P.S. Characterization of immune response in Cross-Reactive Immunological Material (CRIM)-positive infantile Pompe disease patients treated with enzyme replacement therapy. Mol Genet Metab Rep. 2019;20:100475. doi: 10.1016/j.ymgmr.2019.100475.
  31. Desai A.K., Li C., Rosenberg A.S., Kishnani P.S. Immunological challenges and approaches to immunomodulation in Pompe disease: a literature review. Ann Transl Med. 2019;7:285. doi: 10.21037/atm.2019.05.27.
  32. Poelman E., Hoogeveen-Westerveld M., Kroos-de Haan M.A., et al. High sustained antibody titers in patients with classic infantile pompe disease following immunomodulation at start of enzyme replacement therapy. J Pediatr. 2018;195:236-43. Doi: 10.1016/ j.jpeds.2017.11.046.
  33. Poelman E., van den Dorpel J.J.A, Hoogeveen-Westerveld M., et al. Effects of higher and more frequent dosing of alglucosidase alfa and immunomodulation on long- term clinical outcome of classic infantile Pompe patients. J Inherit Metab Dis. 2020;43:1243-53. doi: 10.1002/jimd.12268.
  34. Prater S.N., Banugaria S.G., DeArmey S.M., et al. The emerging phenotype of long-term survivors with infantile Pompe disease. Genet Med. 2012;14:800-10. Doi: 10.1038/ gim.2012.44.
  35. Fatehi F., Ashrafi M.R., Babaee M., et al. Recommendations for Infantile-Onset and Late-Onset Pompe Disease: An Iranian Consensus. Front Neurol. 2021;12:739931. Doi: 10.3389/ fneur.2021.739931.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies