Physical properties of surfactant as a basis for its effectiveness in the experiment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article presents data on our experimental studies devoted to the effects of different concentrations of poractant alpha (80 mg/ml and 40 mg/ml) on its distribution in a biological lung model. Neutral aqueous ink served as a marker, for which the surfactant was a conductor solution. The homogeneity of the surfactant distribution could be judged by visual observation, as well as pathological examination of macro- and micropreparations. Preliminary, the viscosity of surfactants, the fluidity of poractant alpha (PA) were analyzed in laboratory conditions, and capillary phenomena were studied using PA with different concentrations. In laboratory conditions, the PA solution with a phospholipid concentration of 40 mg/ml demonstrated the lowest viscosity and, as a result, higher fluidity than PA 80 mg/ml. The surfactant with a lower viscosity was more evenly distributed in the biological model of rabbit lungs, which improved their straightening, which required lower mechanical ventilation parameters, and was combined with less severe damage to the alveolar tissue.

Texto integral

Acesso é fechado

Sobre autores

Aleksei Mostovoi

Vorokhobov City Clinical Hospital No. 67 of the Moscow Healthcare Department; Russian Medical Academy of Continuous Professional Education; Yaroslavl State Medical University

Autor responsável pela correspondência
Email: valmost@mail.ru
ORCID ID: 0000-0002-7040-9683

Cand. Sci. (Med.), Head of the Neonatal Intensive Care Unit, Associate Professor, Department of Neonatology named after V.V. Gavryushov, Assistant, Department of Outpatient Therapy, Clinical Laboratory Diagnostics and Medical Biochemistry, Faculty of Postgraduate Education

Rússia, Moscow; Moscow; Yaroslavl

Anna Karpova

Vorokhobov City Clinical Hospital No. 67 of the Moscow Healthcare Department; Russian Medical Academy of Continuous Professional Education; Yaroslavl State Medical University

Email: anna1409@mail.ru
ORCID ID: 0000-0002-1024-0230

Cand. Sci. (Med.), Head of Neonatal Department, Associate Professor, Department of Neonatology named after V.V. Gavryushov, Assistant, Department of Outpatient Therapy, Clinical Laboratory Diagnostics and Medical Biochemistry, Faculty of Postgraduate Education

Rússia, Moscow; Moscow; Yaroslavl

Roman Burenkov

Kaluga Regional Children’s Clinical Hospital

Email: burenkov.kodb@gmail.com
ORCID ID: 0000-0002-4102-0644

Head of Department, Pathologist

Rússia, Kaluga

Petr Ermolinsky

Lomonosov Moscow State University

Email: valmost@mail.ru
ORCID ID: 0000-0002-4688-2307

Researcher, Laboratory of Biomedical Photonics, Faculty of Physics

Rússia, Moscow

Andrey Lugovtsov

Lomonosov Moscow State University

Email: anlug1@gmail.com
ORCID ID: 0000-0001-5222-8267

Senior Researcher, Laboratory of Biomedical Photonics, Faculty of Physics

Rússia, Moscow

Svetlana Vorobyeva

Vorokhobov City Clinical Hospital No. 67 of the Moscow Healthcare Department

Email: Svetilnikvv@mail.ru
ORCID ID: 0009-0006-8472-1201

Anesthesiologist-Intensivist

Rússia, Moscow

Daria Sinitsa

Vorokhobov City Clinical Hospital No. 67 of the Moscow Healthcare Department

Email: sinitsadaria@yandex.ru
ORCID ID: 0009-0004-7083-4171

Anesthesiologist-Intensivist

Rússia, Moscow

Irina Igina

Vorokhobov City Clinical Hospital No. 67 of the Moscow Healthcare Department

Email: ign.irn@mail.ru
ORCID ID: 0000-0002-7733-4258

Anesthesiologist-Intensivist

Rússia, Moscow

Sergei Nekhoroshkin

Russian Medical Academy of Continuous Professional Education

Email: nekhoroshkin2000@gmail.com
ORCID ID: 0009-0006-3851-5247

Physician, Clinical Resident, Department of Neonatology named after V.V. Gavryushov

Rússia, Moscow

Nikolai Volodin

Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology

Email: 0209vnn@mail.ru
ORCID ID: 0000-0002-2667-8229

Dr. Sci. (Med.), Professor, Full Member of the Russian Academy of Sciences, President of the Russian Association of Perinatal Medicine Specialists; Head of the Department of Pediatrics

Rússia, Moscow

Bibliografia

  1. Speer C.P., Robertson B., Curstedt T., et al. Randomized European multicenter trial of surfactant replacement therapy for severe neonatal respiratory distress syndrome: single versus multiple doses of Curosurf. Pediatrics. 1992;89(1):13–20.
  2. Ramanathan R., Rasmussen M.R., Gerstmann D.R., et al. A randomized, multicenter masked comparison trial of poractant alfa (Curosurf) versus beractant (Survanta) in the treatment of respiratory distress syndrome in preterm infants. Am J Perinatol. 2004;21(3):109–19. https://doi.org/10.1055/s-2004-823779
  3. Fabbri L., Salomon F. Therapeutic combination for the treatment of developing bpd containing pulmonary surfactant and steroid. Патент RU 2757902 C2, от 22.10.2021. Патентообладатели: Chiesi Farmaceutici S.P.A. (IT)
  4. Описание изобретения к патенту RU 2823855 C2 «Терапевтическая комбинация, содержащая легочный сурфактант и стероид, для профилактики БЛД» от 30.07.2024. Jobe A. (IT), Schmidt A.S. (IT), Hillman N. (IT), Kemp M. (IT). Патентообладатели: Chiesi Farmaceutici S.P.A. (IT), Children’s Hospital Medical Center (US).
  5. Cassidy K., Bull J., Glucksberg M., et al. A rat lung model of instilled liquid transport in the pulmonary airways. J Appl Physiol (1985). 2001;90(5):1955–67. https://doi.org/10.1152/jappl.2001.90.5.1955
  6. Anderson J., Molthen R., Dawson C. et al. Effect of ventilation rate on instilled surfactant distribution in the pulmonary airways of rats. J Appl Physiol (1985). 2004;97(1):45–56. https://doi.org/10.1152/japplphysiol.00609.2003
  7. King D., Wang Z., Kendig J., et al. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions. Chem Phys Lipids. 2001;112(1):11–9. https://doi.org/10.1016/s0009-3084(01)00150-5
  8. Swartz D., Klein W., Row S., et al. Comparison of dynamic viscosities of lung surfactant drugs. Poster presented Hot Topics. 2017. https://infasurf.com/about/the-science/viscosity/
  9. Copploe A., Vatani M., Choi J.W., et al. A Three-Dimensional Model of Human Lung Airway Tree to Study Therapeutics Delivery in the Lungs. Ann Biomed Eng. 2019;47(6):1435–1445. https://doi.org/10.1007/s10439-019-02242-z
  10. Mostovoy A.V., Aleksandrovich Iu.S., Sapun O.I., et al. Effect of surfactant administration time on the outcomes in low and extremely low birth weight neonates. Anesteziol Reanimatol. 2009;(1):43–46.
  11. Карпова А.Л., Мостовой А.В., Харитонова Н.Р. и др. Влияние применения бычьего и свиного сурфактанта у недоношенных новорожденных детей с респираторным дистресс-синдромом на краткосрочные исходы: пилотное многоцентровое исследование. Педиатрия. 2020;99(3):161–167. [Karpova A.L., Mostovoy A.V., Haritonova N.R., et al. Effect of bovine and porcine surfactant in preterm newborns with respiratory distress syndrome on short-term outcomes: a pilot multicenter study. Pediatria n.a. G.N. Speransky. 2020;99(3):161–167. https://doi.org/10.24110/0031-403X-2020-99-3-161-167
  12. King D.M., Wang Z., Palmer H.J., et al. Bulk shear viscosities of endogenous and exogenous lung surfactants. Am J Physiol Lung Cell Mol Physiol. 2002 Feb;282(2):L277–284. https://doi.org/10.1152/ajplung.00199.2001
  13. Имамова Р.В. Капиллярные и осмотические явления в живых организмах. Шаг в науку. 2017;4:39–42. Imamova R.V. Kapillyarnye i osmoticheskie yavleniya v zhivyh organizmah = Capillary and osmotic phenomena in living organisms. SHag v nauku = Step into science. 2017;4:39–42.
  14. Мостовой А.В., Жакота Д.А., Карпова А.Л. и др. Анатомические параметры трахеи у недоношенных новорожденных с массой тела при рождении менее 1000 г для эффективного и безопасного малоинвазивного введения сурфактанта. Российский вестник перинатологии и педиатрии. 2021;66:(5):60–66. [Mostovoy A.V., Zhakota D.A., Karpova A.L., et al. Anatomical tracheal parameters in premature neonates with birth body weight less than 1000 g for effective and safe administration of surfactant. Ros Vestn Perinatol i Pediatr 2021;66:(5):60–66. https://doi.org/10.21508/1027-4065-2021-66-5-60-66
  15. Ghalia Kaouane, Jean-François Berret, Yannick Crémillieux, et al. New insights into exogenous surfactant delivery to preterm infant lungs: characterization and efficiency of atomization using an ex vivo respiratory model. 2024. [hal-04750298] (access date: 22.04.25/URL: https://cnrs.hal.science/hal-04750298v1)
  16. Vasquez E.S., Bowser J., Swiderski C., et al. Rheological characterization of mammalian lung mucus. RSC Advances. 2014;4(66):34780–34783. https://doi.org/10.1039/C4RA05055J
  17. Mostovoy A.V., Karpova A.L., Mezhinsky S.S., Volodin N.N. Effect of same dose varying concentration poractant alfa on outcomes in preterm infants under 32 weeks of age. Акушерство, Гинекология и Репродукция = Obstetrics, Gynecology and Reproduction. 2023;17(5):565–583. [English] https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.448.
  18. Мостовой А.В., Карпова А.Л., Межинский С.С., Володин Н.Н. Состояние проблемы организации оказания респираторной помощи новорожденным детям в России сегодня: результаты опроса врачей-неонатологов и анестезиологов-реаниматологов. Педиатрия им. Г.Н. Сперанского. 2021;100(5):209–219. [Mostovoy A.V., Karpova A.L., Mezhinsky S.S., Volodin N.N. State of the problem of organization of respiratory care for newborn children in today’s Russia: survey results of a of neonatologists and intensive care specialists. Pediatria n.a. G.N. Speransky. 2021;100(5):209–219. https://doi.org/10.24110/0031-403X-2021-100-5-209-219

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Figure 1. Rotational viscometer RM100 CP1000 PLUS (Lamy Rheology Instruments, France)

Baixar (137KB)
3. Figure 2. Evaluation of capillary phenomena of poractant alpha solution with a concentration of 80 mg/mL (left) and with a concentration of 40 mg/mL (right) using a capillary with an internal hole diameter of 1.2 mm and a length of 120 mm

Baixar (118KB)
4. Figure 3. The degree of fluidity of a surfactant solution with different concentrations

Baixar (232KB)
5. Figure 4. Distribution of surfactant viscosity at a shear rate of 1000 s-1

Baixar (57KB)
6. Figure 5. Model №1, on the left - X-ray control of the endotracheal tube position, on the right - the first ink spot appears within the first minutes after the introduction of stained surfactant on the cardiac side of the left lung

Baixar (157KB)
7. Figure 6. Model №2, on the left - X-ray control of the endotracheal tube position, on the right - the first ink spots appear within the first minutes after the introduction of stained surfactant evenly on the surface of both lungs from the diaphragmatic surface

Baixar (180KB)
8. Figure 7. Rabbit lungs after removal from the chest cavity (view from the dorsal side of the lungs). Tracheal sections were made at the level of the end of the endotracheal tube. A more uniform distribution of stained surfactant throughout the lungs is determined in Model №2 (Model №2)

Baixar (173KB)
9. Figure 8. Macroscopic preparations of layered lung tissue sections with a step of 0.5 cm demonstrate complete staining of the lungs from the inside (formalin-fixed lung preparations). L1 - left lung of Model №1, R1 - right lung of Model №1, L2 - left lung of Model №2, R2 - right lung of Model №2

Baixar (144KB)
10. Figure 9. Model №1, on the left in various areas of the lungs (1a, 1b) pronounced dystelectasis and atelectasis are determined. Model №2, on the right are areas (2a, 2b) with uniform straightening of the lungs an hour after the introduction of surfactant and artificial ventilation

Baixar (316KB)

Declaração de direitos autorais © Bionika Media, 2025