Monogennye formy sakharnogo diabeta


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Monogenic forms of diabetes are rare pathologies among various disorders of carbohydrate metabolism. Currently, these include variants associated with genetic disorders of function of pancreatic β-cells and/or factors involved in glucose metabolism. This review presents data on the etiopathogenesis of 11 variants of MODY-type diabetes mellitus and major causes of neonatal diabetes mellitus.

Full Text

Restricted Access

References

  1. Ellard S., Bellanne-Chantelot C., Hattersley A.T., and European Molecular Genetics Quality Network (EMQN) MODY group (2008). Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008;51(4):546-53.
  2. Tattersall R.B. Mild familial diabetes with dominant inheritance. Q J Med 1974;43:339-57.
  3. Frayling T.M., Evans J.C., Bulman M.P., et al. beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001;50(1):S94-S100.
  4. Pearson E.R., Velho G., Clark P., et al. β-Cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1α and glucokinase mutations. Diabetes 2001;50(1):S101-07.
  5. Massa O., Meschi F., Cuesta-Munoz A., et al. Italian Society of Paediatic Endocrinology and Diabetes (SIEDP). High prevalence of glucokinase mutations in Italian children with MODY. Influence on glucose tolerance, first-phase insulin response, insulin sensitivity and BMI. Diabetologia 2001;44:898-905.
  6. Ellard S., Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006;27:854-69.
  7. Matschinsky F.M. Regulation of pancreatic betacell glucokinase: from basics to therapeutics. Diabetes 2002;51:S394-S404.
  8. Matschinsky F.M. Glucokinase, glucose homeostasis, and diabetes mellitus. Curr Diab Rep 2005;5:171-76.
  9. Osbak K.K., Colclough K., Saint-Martin C., et al. Update on mutations inglucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009;30:1512-26.
  10. Shih D.Q., Stoffel M. Dissecting the transcriptional network of pancreatic islets during development and differentiation. Proc Natl Acad Sci USA 2001;98: 14189-91.
  11. Pontoglio M., Prie D., Cheret C., et al. HNF1a controls renal glucose reabsorption in mouse and man. EMBO Rep 2000;1:359-36.
  12. Vaxillaire M., Froguel P. Genetic basis of maturity-onset diabetes of the young. Endocrinol Metab Clin North Am 2006;35:371-84.
  13. Pearson E.R., Starkey B.J., Powell R.J., et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003;362:1275-82.
  14. Pearson E.R., Pruhova S., Tack C., et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor-4α mutations in a large European collection. Diabetologia 2005;48:878-85.
  15. Pearson E.R., Boj S.F., Steele A.M., et al. Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene. Plos Medicine 2007;4(4).
  16. Horikawa Y., Iwasaki N., Hara M., et al. (Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997;17:384-85.
  17. Bellanne-Chantelot C., Chauveau D., Gautier J.F. Dubois-Laforgue D, et al. Clinical spectrum associated with hepatocyte nuclear factor-1β mutations. Ann Intern Med 2004;140:510-17.
  18. Stoffers D.A., Ferrer J., Clarke W.L., Habener J.F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 1997;17:138-39.
  19. Liu L., Furuta H., Minami A., et al. A novel mutation, Ser159Pro, in the NeuroD1/BETA2 gene contributes to the development of diabetes in a Chinese potential MODY family. Mol Cell Biochem 2007;303:115-20.
  20. Neve B., Fernandez-Zapico M.E., Ashkenazi-Katalan V., et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Roc Natl Acad Sci USA 2005;29; 102(13):4807-12.
  21. Bengtsson-Ellmark S.H., Nilsson J., Orho-Melander M., et al. Association between a polymorphism in the carboxyl ester lipase gene and serum cholesterol profile. Eur J Hum Genet 2004;12:627-32.
  22. Plengvidhya N., Kooptiwut S., Songtawee N., et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 2007;92: 2821-26.
  23. Molven A., Ringdal M., Nordbo A., et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes 2008;57: 1131-35.
  24. Borowiec M., Liew C.W., Thompson R., et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Nat Acad Sci 2009;106: 14460-65.
  25. Flechtner I., Vaxillaire M., Cave H., et al. Diabetes in very young children and mutations in the insulin-secreting cell potassium channel genes: therapeutic consequences. Endocr Dev 2007;12:86-98.
  26. Arthur E.I., Zlotogora J., Lerer I., et al. Transient neonatal diabetes mellitus in a child with invdup (6)(q22q23) of paternal origin. Eur J Hum Genet 1997;5:417-19.
  27. Rubio-Cabezas O., Klupa T., Malecki M.T., CEED3 Consortium. Permanent neonatal diabetes mellitus the importance of diabetes differential diagnosis in neonates and infants. Eur J Clin Invest 2011;41:323-33.
  28. Suzuki S., Makita Y., Mukai T., et al. Molecular basis of neonatal diabetes in Japanese patients. J Clin Endocrinol Metab 2007;92:3979-85.
  29. Temple I.K., Mackay D.J.G. Diabetes Mellitus, 6q24-Related Transient Neonatal In: Pagon R.A., Bird T.D., Dolan C.R., Stephens K., Adam M.P., editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2005 Oct 10.
  30. Flanagan S.E., Patch A., Mackay D.J.G., et al. Mutations in KATP channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007;56:1930-37.
  31. Schwitzgebel V.M., Mamin A., Brun T., et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab 2003;88:4398-406.
  32. Sellick G.S., Barker K.T., Stolte-Dijkstra I., et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004;36:1301-5.
  33. Senee V., Chelala C., Duchatelet S., et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Gene. 2006;38:682-87.
  34. Rubio-Cabezas O., Minton J.A., Kantor I., et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 2010;59(9):2326-31.
  35. Pinney S.E., Oliver-Krasinski J., Ernst L., et al. DD Neonatal diabetes and congenital malabsorptive diarrhea attributable to a novel mutation in the human neurogenin-3 gene coding sequence. J Clin Endocrinol Metab 2011;96(7):1960-65.
  36. Mitchell J., Punthakee Z., Lo B., et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia 2004;47:2160-74.
  37. Edghill E.L., Flanagan S.E., Patch A.M., et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008;57:1034-42.
  38. Delepine M., Nicolino M., Barrett T., et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000;25:406-09.
  39. Hannibal M.C., Torgerson T. IPEX Syndrome GeneReviews, Bookshelf ID: NBK1118.
  40. Njolstad P.R., Sovik O., Cuesta-Munoz A., et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 2001;344:1588-92.
  41. Gloyn A.L., Pearson E.R., Antcliff J.F., et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350:1838-49.
  42. Babenko A.P., Polak M., Cave H., Busiah K., Czernichow P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006;355:456-66.
  43. Proks P., Shimomura K., Craig T.J., Girard C.A, Ashcroft F.M. Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Hum Mol Genet 2007; 16:2011-19.
  44. Polak M., Cave H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2007;2:12.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies