PATHOPHYSIOLOGICAL APPROACH AS A BASIS FOR THE SELECTION OF STRATEGY FOR THE SUCCESS TREATMENT OF TYPE 2 DIABETES MELLITUS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paradigm of pathophysiological approach to the treatment of type 2 diabetes mellitus should consist in correcting the multiple disorders that underlie the progression of the disease, and different classes of drugs should be considered as complementary variants in the early combination therapy, but not as an additional reserve at the stage of inevitable therapeutic failure. Furthermore, the choice of therapy regimens must be carried out taking into account their effect on the function of pancreatic β-cells.

Full Text

Restricted Access

About the authors

A. S Ametov

FSBEIFPE «Russian Medical Academy of Continuous Postgraduate Education» of RMH

Email: ametov.alexander@gmail.com
MD, Prof., Head of the Department of Endocrinology and Diabetology Moscow

References

  1. DeFronzo R.A. Lilly Lecture: The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 1988;37:667-87.
  2. DeFronzo R.A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773-95.
  3. Schwartz S.S., Epstein S., Corkey B.E., Grant S.F., Gavin J.R. 3rd, Aguilar R.B. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell-Centric Classification Schema. Diabetes Care. 2016;39:179-186.
  4. De Fronzo R.A., Eldor R., Abdul-Ghani M. Pathophysiologic Approach to Therapy in Patients With Newly Diagnosed Type 2 Diabetes. Diabetes care. 2013;36(Suppl. 2).
  5. Donath M.Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 2014;13:465-76.
  6. Rossetti L., Hawkins M., Chen W., Gindi J., Barzilai N. In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J. Clin. Invest. 1995;96:132-40.
  7. Roep B.O., Tree TI. Immune modulation in humans: implications for type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2014;10:229-42.
  8. Kahn S.E., Cooper M.E., Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068-83.
  9. Allin K.H., Nielsen T., Pedersen O. Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 2015;172:167-77.
  10. Tai N., Wong FS., Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 2015;16:55-65.
  11. Carvalho B.M., Saad M.J. Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators Inflamm. 2013;2013:986734.
  12. Straub R.H. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res. Ther. 2014; 16(Suppl. 2):S4.
  13. Schlaich M., Straznicky N., Lambert E., Lambert G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol. 2015;3:148-57.
  14. Coomans C.P, van den Berg S.A., Lucassen E.A., et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2013;62: 1102-108.
  15. De Fronzo R.A. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Res. 1997;5:177-269.
  16. Bergman R.N., Finegood D.T., Kahn S.E. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur. J. Clin. Invest. 2002;32(Suppl. 3):35-45.
  17. DeFronzo R.A., Davidson J.A., Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab. 2012;14:5-14.
  18. Bo Ahrén, J.E. Foley. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. Diabetologia. 2016;59(5):907-17.
  19. Finan B., Müller T.D., Clemmensen C., Perez-Tilve D., DiMarchi R.D., Tschöpet M.H. Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine. 2016;22(5).
  20. Nauk M.A., Kind J., Köthe L.D., Holst J.J., Deacon C.F., Broschag M., He Y.L., Kjems L., Foley J. Quantification of the contribution of GLP-1 to mediating insulinotropic effects of DPP-4 inhibition with vildagliptin in healthy subjects and type 2-diabetic patients using exendin [9-39] as a GLP-1 receptor antagonist. Diabetes. 2016;65(8):2440-47.
  21. Scherbaum W.A., Schweizer A., Mari A., et al. Evidence that vildagliptin attenuates deterioration of glycaemic control during 2-year treatment of patients with type 2 diabetes and mild hyperglycaemia. Diabetes Obes. Metab. 2008;10:1114-24.
  22. Bosi. E., Camisasca R.P., Collober C., Rochotte E., Garber A.J. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007;30:890-95.
  23. Ahrén B., Pacini G., Foley J.E., Schweizer A. Improved meal-related β-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin- treated patients with type 2 diabetes over 1 year. Diabetes Care. 2005;28:1936-40.
  24. Ahrén B., Landin-Olsson M., Jansson P.A., Svensson M., Holmes D., Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J. Clin. Endocrinol. Metab. 2004;89:2078-84.
  25. Ahrén B, Foley J.E., Ferrannini E., et al. Changes in prandial glucagon levels after a 2-year treatment with vildagliptin or glimepiride in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2010;33:730-32.
  26. Gutnaik M., 0rskov C., Holst J.J., Ahrén B., Efendic S. Antidiabetic effect of glucagon-like peptide-1 (7-36) amide in normal subjects and patients with diabetes mellitus. N. Engl. J. Med. 1992;326:1316-22.
  27. Ahrén B., Schweizer A., Dejager S., et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2009;94:1236-43.
  28. Vilsboll T., Krarup T., Madsbad S., Holst J.J. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul. Pept. 2003;114:115-21.
  29. Christensen M., Vedtofte L., Hot J.J., Vilsboll T., Knop F.K. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes. 2011;60:3103-109.
  30. Pietropaolo M., Barinas-Mitchell E., Kuller L.H. The heterogeneity of diabetes: unraveling a dispute: is systemic inflammation related to islet autoimmunity? Diabetes. 2007;56:1189-97.
  31. Subauste A., Gianani R., Chang A.M., et al. Islet autoimmunity identifies a unique pattern of impaired pancreatic beta-cell function, markedly reduced pancreatic beta cell mass and insulin resistance in clinically diagnosed type 2 diabetes. PLoS One. 2014;9:e106537.
  32. Oslowski C.M., Hara T., O'Sullivan-Murphy B., et al. Thioredoxin-interacting protein mediates ER stress-induced b cell death through initiation of the inflammasome. Cell. Metab. 2012; 16:265-73.
  33. Makdissi A., Ghanim H., Vora M., Green A., Abuaysheh S., Chaudhuri A., et al. Sitagliptin Exerts an Antinflammatory Action. J. Clin. Endocrinol. Metab. 2012;97(9):3333-41.
  34. Barbieri M., et al. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis. 2013;227:349-54.
  35. Rizzo M.R., Barbieri M., Marfella R., Paolisso G. Reduction of Oxidative Stress and Inflammation by Blunting Daily Acute Glucose Fluctuations in PatientsWith Type 2 Diabetes. Role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012;35(10):2076-82.
  36. Hatwal A. Inflammation and incretins. Indian Journal of Endocrinology and Metabolism. 2012;16(Suppl. 2):239-41.
  37. Drucker D.J. The biology of incretin hormones. Cell. Metab. 2006;3:153-56.
  38. Pacheco R., Martinez-Navio J.M., Lejeune M., Climent N., Oliva H., Gatell J.M., Gallart T., Mallol J., Lluis C., Franco R. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc. Natl. Acad. Sci. USA. 20055;102(27):9583-88.
  39. Waget A., Cabou C., Masseboeuf M., Cattan P., Armanet M., Karaca M., Castel J., Garret C., Payros G., Maida A., Sulpice T., Holst J.J., Drucker D.J., Magnan C., Burcelin R., Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice., Endocrinology. 2011;152(8): 3018-29.
  40. Burcelin R., Gourdy P., Dalle S. ГПП-1-Based Strategies: A Physiological Analysis of Differential Mode of Action, Physiology. 2014;29:108-21.
  41. Amouya C., Andreelli F. Increasing GLP-1 Circulating Levels by Bariatric Surgery or by GLP-1 Receptor Agonists Therapy: Why Are the Clinical Consequences so Different? J. Diabet. Res. 2016;(Art. ID 5908656):10.
  42. Sanz Y., Olivares M., Moya-Pérez Á., Agostoni C. Understanding the role of gut microbiome in metabolic disease risk. Pediatric. Res. 2015;77:236-44.
  43. Muoio D.M., Newgard C.B. Molecular and metabolic mechanisms of insulin resistance and ß-cell failure in type 2 diabetes, nature re views molecular cell biology. 2008;9:193-205.
  44. Hayes M.R., Mietlicki-Baase E.G., Kanoski S.E., De Jonghe B.C. Incretins and Amylin: Neuroendocrine Communication between the Gut, Pancreas, and Brain in Control of Food Intake and Blood Glucose, Ann. Rev. Nutr. 2014;34:237-60.
  45. Boschmann M., Engeli S., Dobberstein K., et al. Dipeptidylpeptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2009;94:846-52.
  46. Matikaine.n N., Mänttäri S., Schweizer A., et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49:2049-57.
  47. Tremblay A.J., Lamarche B., Deacon C.F., Weisnagel S.J., Couture P. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes. Metab. 2011; 13:366-73.
  48. Eliasson B., Möller-Goede D., Eeg-Olofsson K., et al. Lowering of postprandial lipids in individuals with type 2 diabetes treated with alogliptin and/ or pioglitazone: a randomized double-blind placebo-controlled study. Diabetologia. 2012); 55:915-25.
  49. Giuseppe Derosa. Vildagliptin action on some adipocytokine levels in type 2 diabetic patients: a 12-month, placebo controlled study. Expert. Opin. Pharmacother. 2012;13(18).
  50. Del Prato S., Foley J.E., Kothny W., Kozlovski P., Stumvoll M., Paldánius P.M., Matthews D.R. Study to determine the durability of glycaemic control with early treatment with a vildagliptin-metformin combination regimen vs. standard-of-care metformin monotherapy-the VERIFY trial: a randomized double-blind trial. Diabet Med. 2014;31(10):1178-84.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies