The influence of CYP2C9 gene polymorphisms on the efficacy of losartan in patients with grade I-II arterial hypertension


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background. Angiotensin II receptor antagonists (ARAII, sartans) are one of the drugs of choice in the treatment of arterial hypertension (AH). The use of antihypertensive drugs is not equally effective for all patients. Losartan is metabolized to an active metabolite by cytochrome CYP2C9. The gene encoding this enzyme has several polymorphisms that affect its activity. Objective. Assesment of the effect of CYP2C9 gene polymorphisms on the hypotensive efficacy of therapy with losartan. Methods. The study included 81 patients. At the first stage, 24-hour blood pressure monitoring and genotyping for CYP2C9*2 and CYP2C9*3 allele variants were performed. Against the background of monotherapy with losartan, the activity of the CYP2C9 isoenzyme was assessed as the E-3174 losartan metabolite/ losartan concentration in the urine ratio. Depending on the results of CYP2C9 genotyping, the patients were divided into two comparison groups: the first group - carriers of the CYP2C9*1/*1 allele and the second ones - carriers of the CYP2C9*2, CYP2C9*3 alleles. At the second stage, 3 months after, various parameters of 24-hour blood pressure monitoring and the effectiveness of the therapy between the two groups were assessed. Results. An association of CYP2C9 polymorphic alleles with ineffectiveness of losartan therapy was revealed (OR=8.13, 95% CI 2.75-23.98). Comparative analysis of 24-hour blood pressure monitoring data showed that mean and maximum systolic and diastolic blood pressure at the end of the study was significantly higher in carriers of CYP2C9*2 and *3 allele variants. The deltas between the 24-hour blood pressure monitoring values before and after therapy were significantly higher in carriers of the CYP2C9*1/*1 variant. The results of a pharmacokinetic study did not reveal any effect of CYP2C9 gene polymorphisms on the concentration of losartan and its metabolite in urine. Conclusion. Carriage of allelic variants CYP2C9*2 and CYP2C9*3 is associated with a decrease in the hypotensive effect of losartan.

全文:

受限制的访问

作者简介

I. Sinitsina

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

A. Boyarko

LMS Clinic

Moscow, Russia

Ilyas Temirbulatov

Russian Medical Academy of Continuous Professional Education

Email: temirbulatov.ilyas@gmail.com
Resident at the Department of Clinical Pharmacology and Therapy Moscow, Russia

K. Mirzaev

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

E. Grishina

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

Zh. Sozaeva

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

K. Akmalova

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

G. Shuev

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

N. Denisenko

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

A. Kachanova

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

D. Sychev

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

参考

  1. Turner S.T., Schwartz G.L., Chapman A.B., et al. Antihypertensive pharmacogenetics: Getting the right drug into the right patient. J Hypertens. 2001;19:1-11.
  2. Williams B., Mancia G., Spiering W., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018;39:3021-104. doi: 10.1093/eurheartj/ehy339.
  3. Suchard M.A., Schuemie M.J., Krumholz H.M., et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019;394:1816-26. doi: 10.1016/S0140-6736(19)32317-7.
  4. Sica D.A., Gehr T.W.B., Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44:797-814. doi: 10.2165/00003088-200544080-00003.
  5. Spiering W., Kroon A.A., Fuss-Lejeune M.J.M.J., De Leeuw PW. Genetic contribution to the acute effects of angiotensin II type 1 receptor blockade. J. Hypertens. 2005;23:753-58. doi: 10.1097/01. hjh.0000163143.66965.06.
  6. Yasar U., Tybring G., Hidestrand M., et al. Role of Cyp2C9 Polymorphism in Losartan Oxidation. Drug Metab Dispos.2001;29:1051-56.
  7. Wang B., Wang J., Huang S.-Q., et al. Genetic Polymorphism of the Human Cytochrome P450 2C9 Gene and Its Clinical Significance. Curr Drug Metab. 2009;10:781-834. doi: 10.2174/138920009789895480.
  8. Yasar U., Forslund-Bergengren C., Tybring G., et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther. 2002;71:89-98. doi: 10.1067/mcp.2002.121216.
  9. Zhou Y., Ingelman-Sundberg M., Lauschke V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin Pharmacol Ther. 2017;102:688-700. doi: 10.1002/cpt.690.
  10. Мирзаев К.Б., Федоринов Д.С., Иващенко Д.В., Сычев Д.А. Мультиэтнический анализ кардиологических фармакогенетических маркеров генов цитохрома Р450 и мембранных транспортеров в российской популяции. Рациональная фармакотерапия в кардиологии. 2019;15(3):393-406
  11. Cabaleiro T., Roman M., Ochoa D., et al. Evaluation of the relationship between sex, polymorphisms in CYP2C8 and CYP2C9, and pharmacokinetics of angiotensin receptor blockers. Drug Metab. Dispos. 2013;41:22429. doi: 10.1124/dmd.112.046292
  12. Yasar Ü., Dahl M.L., Christensen M., Eliasson E. Intraindividual variability in urinary losartan oxidation ratio, an in vivo marker of CYP2C9 activity. Br. J. Clin. Pharmacol. 2002;54:183-85.
  13. Sekino K., Kubota T., Okada Y., et al. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol 2003;59:589-92. doi: 10.1007/s00228-003-0664-5.
  14. Joy M.S., Dornbrook-Lavender K., Blaisdell J., et al. CYP2C9 genotype and pharmacodynamic responses to losartan in patients with primary and secondary kidney diseases. Eur. J. Clin. Pharmacol. 200965:947-53. doi: 10.1007/s00228-009-0707-7.
  15. de Andres F., Teran S., Bovera M., et al. Multiplex Phenotyping for Systems Medicine: A One-Point Optimized Practical Sampling Strategy for Simultaneous Estimation of CYP1A2, CYP2C9, CYP2C19, and CYP2D6 Activities Using a Cocktail Approach. OMICS. 2016;20:88-96. Doi: 10.1089/ omi.2015.0131.
  16. Сычев Д.А. Рекомендации для фармацевтических компаний по изучению биотрансформации и транспортеров новых лекарственных средств: дизайн исследований, анализ данных и внесение информации в инструкции по применению. Науч. ред. В.Г. Кукес. М., 2009
  17. Parati G., Stergiou G., O'Brien E., et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359-66. doi: 10.1097/HJH.0000000000000221.
  18. Gaborieau V., Delarche N., Gosse P Ambulatory blood pressure monitoring versus self-measurement of blood pressure at home: Correlation with target organ damage. J. Hypertens. 2008;26:1919-27. doi: 10.1097/HJH.0b013e32830c4368.
  19. Clement D.L., De Buyzere M.L., De Bacquer D.A., et al. Prognostic Value of Ambulatory Blood-Pressure Recordings in Patients with Treated Hypertension. N Engl J Med. 2003;348:2407-15. Doi: 10.1056/ nejmoa022273.
  20. Banegas J.R., Ruilope L.M., de la Sierra A., et al. Relationship between Clinic and Ambulatory Blood-Pressure Measurements and Mortality. N Engl J Med. 2018;378:1509-20. doi: 10.1056/nejmoa1712231.
  21. Sega R., Facchetti R., Bombelli M., et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: Follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005;111:1777-83. doi: 10.1161/01. CIR.0000160923.04524.5B.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2021
##common.cookie##